首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural and kinetic data show that Arg-599 of β-galactosidase plays an important role in anchoring the "open" conformations of both Phe-601 and an active-site loop (residues 794-803). When alanine was substituted for Arg-599, the conformations of Phe-601 and the loop shifted towards the "closed" positions because interactions with the guanidinium side chain were lost. Also, Phe-601, the loop, and Na+, which is ligated by the backbone carbonyl of Phe-601, lost structural order, as indicated by large B-factors. IPTG, a substrate analog, restored the conformations of Phe-601 and the loop of R599A-β-galactosidase to the open state found with IPTG-complexed native enzyme and partially reinstated order. ?-Galactonolactone, a transition state analog, restored the closed conformations of R599A-β-galactosidase to those found with ?-galactonolactone-complexed native enzyme and completely re-established the order. Substrates and substrate analogs bound R599A-β-galactosidase with less affinity because the closed conformation does not allow substrate binding and extra energy is required for Phe-601 and the loop to open. In contrast, transition state analog binding, which occurs best when the loop is closed, was several-fold better. The higher energy level of the enzyme?substrate complex and the lower energy level of the first transition state means that less activation energy is needed to form the first transition state and thus the rate of the first catalytic step (k2) increased substantially. The rate of the second catalytic step (k3) decreased, likely because the covalent form is more stabilized than the second transition state when Phe-601 and the loop are closed. The importance of the guanidinium group of Arg-599 was confirmed by restoration of conformation, order, and activity by guanidinium ions.  相似文献   

2.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

3.
Arg-52 of the Escherichia coli melibiose carrier was replaced by Ser (R52S), Gln (R52Q), or Val (R52V). While the level of carrier in the membrane for each mutant remained similar to that for the wild type, analysis of melibiose transport showed an uncoupling of proton cotransport and a drastic reduction in Na(+)-coupled transport. Second-site revertants were selected on MacConkey plates containing melibiose, and substitutions were found at nine distinct locations in the carrier. Eight revertant substitutions were isolated from the R52S strain: Asp-19-->Gly, Asp-55-->Asn, Pro-60-->Gln, Trp-116-->Arg, Asn-244-->Ser, Ser-247-->Arg, Asn-248-->Lys, and Ile-352-->Val. Two revertants were also isolated from the R52V strain: Trp-116-->Arg and Thr-338-->Arg revertants. The R52Q strain yielded an Asp-55-->Asn substitution and a first-site revertant, Lys-52 (R52K). The R52K strain had transport properties similar to those of the wild type. Analysis of melibiose accumulation showed that proton-driven accumulation was still defective in the second-site revertant strains, and only the Trp-116-->Arg, Ser-247-->Arg, and Asn-248-->Lys revertants regained significant Na(+)-coupled accumulation. In general, downhill melibiose transport in the presence of Na(+) was better in the revertant strains than in the parental mutants. Three revertant strains, Asp-19-->Gly, Asp-55-->Asn, and Thr-338-->Arg strains, required a high Na(+) concentration (100 mM) for maximal activity. Kinetic measurements showed that the N248K and W116R revertants lowered the K(m) for melibiose, while other revertants restored transport velocity. We suggest that the insertion of positive charges on membrane helices is compensating for the loss of Arg-52 and that helix II is close to helix IV and VII. We also suggest that Arg-52 is salt bridged to Asp-55 (helix II) and Asp-19 (helix I).  相似文献   

4.
The cholecystokinin-A receptor (CCK-AR) is a G protein-coupled receptor that mediates important central and peripheral cholecystokinin actions. Residues of the CCK-AR binding site that interact with the C-terminal part of CCK that is endowed with biological activity are still unknown. Here we report on the identification of Arg-336 and Asn-333 of CCK-AR, which interact with the Asp-8 carboxylate and the C-terminal amide of CCK-9, respectively. Identification of the two amino acids was achieved by dynamics-based docking of CCK in a refined three-dimensional model of CCK-AR using, as constraints, previous results that demonstrated that Trp-39/Gln-40 and Met-195/Arg-197 interact with the N terminus and the sulfated tyrosine of CCK, respectively. Arg-336-Asp-8 and Asn-333-amide interactions were pharmacologically assessed by mutational exchange of Arg-336 and Asn-333 in the receptor or reciprocal elimination of the partner chemical functions in CCK. This study also allowed us to demonstrate that (i) the identified interactions are crucial for stabilizing the high affinity phospholipase C-coupled state of the CCK-AR.CCK complex, (ii) Arg-336 and Asn-333 are directly involved in interactions with nonpeptide antagonists SR-27,897 and L-364,718, and (iii) Arg-336 but not Asn-333 is directly involved in the binding of the peptide antagonist JMV 179 and the peptide partial agonist JMV 180. These data will be used to obtain an integrated dynamic view of the molecular processes that link agonist binding to receptor activation.  相似文献   

5.
trans-3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations.  相似文献   

6.
The Tar chemotactic signal transducer of Escherichia coli mediates attractant responses to L-aspartate and to maltose. Aspartate binds across the subunit interface of the periplasmic receptor domain of a Tar homodimer. Maltose, in contrast, first binds to the periplasmic maltose-binding protein (MBP), which in its ligand-stabilized closed form then interacts with Tar. Intragenic complementation was used to determine the MBP-binding site on the Tar dimer. Mutations causing certain substitutions at residues Tyr-143, Asn-145, Gly-147, Tyr-149, and Phe-150 of Tar lead to severe defects in maltose chemotaxis, as do certain mutations affecting residues Arg-73, Met-76, Asp-77, and Ser-83. These two sets of mutations defined two complementation groups when the defective proteins were co-expressed at equal levels from compatible plasmids. We conclude that MBP contacts both subunits of the Tar dimer simultaneously and asymmetrically. Mutations affecting Met-75 could not be complemented, suggesting that this residue is important for association of MBP with each subunit of the Tar dimer. When the residues involved in interaction with MBP were mapped onto the crystal structure of the Tar periplasmic domain, they localized to a groove at the membrane-distal apex of the domain and also extended onto one shoulder of the apical region.  相似文献   

7.
The direct oxygen sensor protein isolated from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of O(2), CO, or NO to a reduced heme significantly enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report stationary and time-resolved resonance Raman spectra of the wild-type and several mutants (Glu-93 --> Ile, Met-95 --> Ala, Arg-97 --> Ile, Arg-97 --> Ala, Arg-97 --> Glu, Phe-113 --> Leu, and Phe-113 --> Thr) of the heme-containing PAS domain of Ec DOS. For the CO- and NO-bound forms, both the hydrogen-bonded and non-hydrogen-bonded conformations were found, and in the former Arg-97 forms a hydrogen bond with the heme-bound external ligand. The resonance Raman results revealed significant interactions of Arg-97 and Phe-113 with a ligand bound to the sixth coordination site of the heme and profound structural changes in the heme propionates upon dissociation of CO. Mutation of Phe-113 perturbed the PDE activities, and the mutation of Arg-97 and Phe-113 significantly influenced the transient binding of Met-95 to the heme upon photodissociation of CO. This suggests that the electrostatic interaction of Arg-97 and steric interaction of Phe-113 are crucial for regulating the competitive recombination of Met-95 and CO to the heme. On the basis of these results, we propose a model for the role of the heme propionates in communicating the heme structural changes to the protein moiety.  相似文献   

8.
The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The three-dimensional structure of NDO revealed that several of the amino acids at the active site of the oxygenase are hydrophobic, which is consistent with the enzyme's preference for aromatic hydrocarbon substrates. Although NDO catalyzes cis-dihydroxylation of a wide range of substrates, it is highly regio- and enantioselective. Site-directed mutagenesis was used to determine the contributions of several active-site residues to these aspects of catalysis. Amino acid substitutions at Asn-201, Phe-202, Val-260, Trp-316, Thr-351, Trp-358, and Met-366 had little or no effect on product formation with naphthalene or biphenyl as substrates and had slight but significant effects on product formation from phenanthrene. Amino acid substitutions at Phe-352 resulted in the formation of cis-naphthalene dihydrodiol with altered stereochemistry [92 to 96% (+)-1R,2S], compared to the enantiomerically pure [>99% (+)-1R,2S] product formed by the wild-type enzyme. Substitutions at position 352 changed the site of oxidation of biphenyl and phenanthrene. Substitution of alanine for Asp-362, a ligand to the active-site iron, resulted in a completely inactive enzyme.  相似文献   

9.
Li C  Li JJ  Montgomery MG  Wood SP  Bugg TD 《Biochemistry》2006,45(41):12470-12479
The alpha/beta-hydrolase superfamily, comprised mainly of esterase and lipase enzymes, contains a family of bacterial C-C hydrolases, including MhpC and BphD which catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid pathway and Burkholderia xenovorans LB400 biphenyl degradation pathway, respectively. Five active site amino acid residues (Arg-188, Asn-109, Phe-173, Cys-261, and Trp-264) were identified from sequence alignments that are conserved in C-C hydrolases, but not in enzymes of different function. Replacement of Arg-188 in MhpC with Gln and Lys led to 200- and 40-fold decreases, respectively, in k(cat); the same replacements for Arg-190 of BphD led to 400- and 700-fold decreases, respectively, in k(cat). Pre-steady-state kinetic analysis of the R188Q MhpC mutant revealed that the first step of the reaction, keto-enol tautomerization, had become rate-limiting, indicating that Arg-188 has a catalytic role in ketonization of the dienol substrate, which we propose is via substrate destabilization. Mutation of nearby residues Phe-173 and Trp-264 to Gly gave 4-10-fold reductions in k(cat) but 10-20-fold increases in K(m), indicating that these residues are primarily involved in substrate binding. The X-ray structure of a succinate-H263A MhpC complex shows concerted movements in the positions of both Phe-173 and Trp-264 that line the approach to Arg-188. Mutation of Asn-109 to Ala and His yielded 200- and 350-fold reductions, respectively, in k(cat) and pre-steady-state kinetic behavior similar to that of a previous S110A mutant, indicating a role for Asn-109 is positioning the active site loop containing Ser-110. The catalytic role of Arg-188 is rationalized by a hydrogen bond network close to the C-1 carboxylate of the substrate, which positions the substrate and promotes substrate ketonization, probably via destabilization of the bound substrate.  相似文献   

10.
Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.  相似文献   

11.
Human tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type proteinase inhibitor that regulates a variety of serine proteinases involved in coagulation and fibrinolysis through their non-productive interaction with a P(1) residue (Arg-24) in its first Kunitz-type domain (KD1). Previous kinetic studies revealed that TFPI-2 was a more effective inhibitor of plasmin than several other serine proteinases, but the molecular basis for this specificity was unclear. In this study, we employed molecular modeling and mutagenesis strategies to produce several variants of human TFPI-2 KD1 in an effort to identify interactive site residues other than the P(1) Arg that contribute significantly to its inhibitory activity and specificity. Molecular modeling of KD1 based on the crystal structure of bovine pancreatic trypsin inhibitor revealed that KD1 formed a more energetically favorable complex with plasmin versus trypsin and/or the factor VIIa-tissue factor complex primarily due to strong ionic interactions between Asp-19 (P(6)) and Arg residues in plasmin (Arg-644, Arg-719, and Arg-767), Arg-24 (P(1)) with Asp-735 in plasmin, and Arg-29 (P(5)') with Glu-606 in plasmin. In addition, Leu-26 through Leu-28 (P(2)'-P(4)') in KD1 formed strong van der Waals contact with a hydrophobic cluster in plasmin (Phe-583, Met-585, and Phe-587). Mutagenesis of Asp-19, Tyr-20, Arg-24, Arg-29, and Leu-26 in KD1 resulted in substantial reductions in plasmin inhibitory activity relative to wild-type KD1, but the Asp-19 and Tyr-20 mutations revealed the importance of these residues in the specific inhibition of plasmin. In addition to the reactive site residues in the P(6)-P(5)' region of KD1, mutation of a highly conserved Phe at the P(18)' position revealed the importance of this residue in the inhibition of serine proteinases by KD1. Thus, together with the P(1) residue, the nature of other residues flanking the P(1) residue, particularly at P(6) and P(5)', strongly influences the inhibitory activity and specificity of human TFPI-2.  相似文献   

12.
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.  相似文献   

13.
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 inhibits trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor with Ki values of 13, 3, and 1640 nM, respectively. To investigate the molecular specificity of KD1, crystals of the complex of KD1 with bovine beta-trypsin were obtained that diffracted to 1.8 A. The P1 residue Arg-15 (bovine pancreatic trypsin inhibitor numbering) in KD1 interacts with Asp-189 (chymotrypsin numbering) and with the carbonyl oxygens of Gly-219 and Ogamma of Ser-190. Leu-17, Leu-18, Leu-19, and Leu-34 in KD1 make van der Waals contacts with Tyr-39, Phe-41, and Tyr-151 in trypsin, forming a hydrophobic interface. Molecular modeling indicates that this complementary hydrophobic patch is composed of Phe-37, Met-39, and Phe-41 in plasmin, whereas in FVIIa/tissue factor, it is essentially absent. Arg-20, Tyr-46, and Glu-39 in KD1 interact with trypsin through ordered water molecules. In contrast, insertions in the 60-loop in plasmin and FVIIa allow Arg-20 of KD1 to directly interact with Glu-60 in plasmin and Asp-60 in FVIIa. Moreover, Tyr-46 in KD1 electrostatically interacts with Lys-60A and Arg-60D in plasmin and Lys-60A in FVIIa. Glu-39 in KD1 interacts directly with Arg-175 of the basic patch in plasmin, whereas in FVIIa, such interactions are not possible. Thus, the specificity of KD1 for plasmin is attributable to hydrophobic and direct electrostatic interactions. For trypsin, hydrophobic interactions are intact, and electrostatic interactions are weak, whereas for FVIIa, hydrophobic interactions are missing, and electrostatic interactions are partially intact. These findings provide insight into the protease selectivity of KD1.  相似文献   

14.
Cyclophilin 40 (CyP40) is a tetratricopeptide repeat (TPR)-containing immunophilin and a modulator of steroid receptor function through its binding to heat shock protein 90 (Hsp90). Critical to this binding are the carboxyl-terminal MEEVD motif of Hsp90 and the TPR domain of CyP40. Two different models of the CyP40-MEEVD peptide interaction were used as the basis for a comprehensive mutational analysis of the Hsp90-interacting domain of CyP40. Using a carboxyl-terminal CyP40 construct as template, 24 amino acids from the TPR and flanking acidic and basic domains were individually mutated by site-directed mutagenesis, and the mutants were coexpressed in yeast with a carboxyl-terminal Hsp90beta construct and qualitatively assessed for binding using a beta-galactosidase filter assay. For quantitative assessment, mutants were expressed as glutathione S-transferase fusion proteins and assayed for binding to carboxyl-terminal Hsp90beta using conventional pulldown and enzyme-linked immunosorbent assay microtiter plate assays. Collectively, the models predict that the following TPR residues help define a binding groove for the MEEVD peptide: Lys-227, Asn-231, Phe-234, Ser-274, Asn-278, Lys-308, and Arg-312. Mutational analysis identified five of these residues (Lys-227, Asn-231, Asn-278, Lys-308, and Arg-312) as essential for Hsp90 binding. The other two residues (Phe-234 and Ser-274) and another three TPR domain residues not definitively associated with the binding groove (Leu-284, Lys-285, and Asp-329) are required for efficient Hsp90 binding. These data confirm the critical importance of the MEEVD binding groove in CyP40 for Hsp90 recognition and reveal that additional charged and hydrophobic residues within the CyP40 TPR domain are required for Hsp90 binding.  相似文献   

15.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

16.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

17.
alpha-Cobratoxin, a long chain curaremimetic toxin from Naja kaouthia venom, was produced recombinantly (ralpha-Cbtx) from Escherichia coli. It was indistinguishable from the snake toxin. Mutations at 8 of the 29 explored toxin positions resulted in affinity decreases for Torpedo receptor with DeltaDeltaG higher than 1.1 kcal/mol. These are R33E > K49E > D27R > K23E > F29A >/= W25A > R36A >/= F65A. These positions cover a homogeneous surface of approximately 880 A(2) and mostly belong to the second toxin loop, except Lys-49 and Phe-65 which are, respectively, on the third loop and C-terminal tail. The mutations K23E and K49E, and perhaps R33E, induced discriminative interactions at the two toxin-binding sites. When compared with the short toxin erabutoxin a (Ea), a number of structurally equivalent residues are commonly implicated in binding to muscular-type nicotinic acetylcholine receptor. These are Lys-23/Lys-27, Asp-27/Asp-31, Arg-33/Arg-33, Lys-49/Lys-47, and to a lesser and variable extent Trp-25/Trp-29 and Phe-29/Phe-32. In addition, however, the short and long toxins display three major differences. First, Asp-38 is important in Ea in contrast to the homologous Glu-38 in alpha-Cbtx. Second, all of the first loop is insensitive to mutation in alpha-Cbtx, whereas its tip is functionally critical in Ea. Third, the C-terminal tail may be specifically critical in alpha-Cbtx. Therefore, the functional sites of long and short curaremimetic toxins are not identical, but they share common features and marked differences that might reflect an evolutionary pressure associated with a great diversity of prey receptors.  相似文献   

18.
To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.  相似文献   

19.
M R Gibbs  P C Moody  A G Leslie 《Biochemistry》1990,29(51):11261-11265
The crystal structure of the Asp-199----Asn mutant of chloramphenicol acetyltransferase (CAT) has been determined to 2.35-A resolution. In wild-type CAT Asp-199 is involved in a fully buried intrasubunit salt bridge with Arg-18, an interaction that is adjacent to the active site. Replacement of aspartate with asparagine by site-directed mutagenesis disrupts this salt bridge and causes extensive conformational changes within the active site. The imidazole group of the catalytically essential His-195 is reoriented, with the loss of interactions thought to stabilize the preferred tautomer of this residue. Arg-18 and Asn-199 form three new intersubunit interactions as a result of large side-chain torsion angle changes which cause the movement of two polypeptide loops, some residues of which are up to 20 A away from the site of the mutation. The new interactions of Arg-18 and Asn-199 compensate for the loss of the buried salt bridge and afford near-wild-type thermostability to Asn-199 CAT, albeit with a greatly reduced activity.  相似文献   

20.
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号