首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Site-directed mutagenesis has been used to produce two mutant forms of yeast phosphoglycerate kinase in which the interdomain residue Phe194 has been replaced by a leucine or tryptophan residue. Using 1H-NMR spectroscopy, it was found that the mutations at position 194 induce both local and long-range conformational changes in the protein. It was also found that 3-phosphoglycerate binding to the mutant proteins induces somewhat different conformational effects to those observed for wild-type phosphoglycerate kinase. The affinity of mutant Phe194----Trp for 3-phosphoglycerate was found by NMR studies to be unaffected, while the affinity of Phe194----Leu mutant is reduced by about threefold relative to the wild-type enzyme. The binding of ATP at the electrostatic site of the mutant proteins is also seen to be about three times weaker for the Phe194----Leu mutant when compared to wild-type or Phe194----Leu mutant. These results are discussed in the light of the kinetic studies on the mutants which show that for Phe194----Leu mutant the Km values for both 3-phosphoglycerate and ATP, as well as the Vmax, are decreased relative to the wild-type enzyme, while for mutant Phe194----Trp, the Km values for 3-phosphoglycerate and ATP are unaffected and the Vmax is decreased when compared to wild-type enzyme. Kinetic studies in the presence of sulphate reveal that the anion activation is greater for mutant Phe194----Trp and less for mutant Phe194----Leu, relative to that observed for wild-type phosphoglycerate kinase. The NMR data, taken together with the kinetic data, are consistent with the on and off rates of 3-phosphoglycerate being affected by the mutations at position 194. It is suggested that Phe194 is important for the mobility of the interdomain region and the relative movement of the 3-phosphoglycerate binding site which allows the optimum conformation for catalysis to be attained. Apparently Trp194 reduces the mobility of the interdomain region of the protein, while Leu194 increases it.  相似文献   

2.
The importance of Trp H33 in antibody recognition of DNA containing a central pyrimidine (6-4) pyrimidone photoproduct was investigated. This residue was replaced by Tyr, Phe and Ala and the binding abilities of these mutants were determined by surface plasmon resonance and fluorescence spectroscopy. Conservative substitution of Trp H33 by Tyr or Phe resulted in moderate losses of binding affinity; however, replacement by Ala had a significantly larger impact. The fluorescence properties of DNA containing a (6-4) photoproduct were strongly affected by the identity of the H33 residue. DNA binding by both the wild-type and the W-H33-Y mutant was accompanied by a small degree of fluorescence quenching; by contrast, binding by the W-H33-F and W-H33-A mutants produced large fluorescence increases. Taken together, these variations in binding and fluorescence properties with the identity of the H33 residue are consistent with a role in photoproduct recognition by Trp H33 in the high-affinity antibody 64M5.  相似文献   

3.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues. In order to obtain information on the fluorescence contribution of the individual Trp residues in native GLA, we recorded the fluorescence spectra of four GLA mutants, W26F, W60F, W104F, and W118F, in each of which a single Trp residue was replaced with phenylalanine (Phe). Comparison of the fluorescence spectra of the four mutants with that of wild-type GLA indicated that, in native GLA, three Trp residues (Trp60, Trp104, and Trp118) are strongly quenched and account for the partial indirect quenching of Trp26. As a consequence, the fluorescence of wild-type GLA and of the mutants W60F, W104F, and W118F mainly results from Trp26. An inspection of the crystal structure indicated that, in addition to the disulfide bonds that are in direct contact with the indole groups of Trp60 and Trp118, backbone peptide bonds that are in direct contact with the indole groups of Trp60, Trp104, and Trp118, contribute to the direct quenching effects. Interestingly, the lack of direct quenching of Trp26 explains why the cleavage of disulfide bonds by UV light is mediated more by the highly fluorescent Trp26 than by the less fluorescent Trp104 and Trp118.  相似文献   

4.
Human cyclophilin A (hCypA) contains one tryptophan residue at position 121 (Trp121). The fluorescence intensity of this single tryptophan residue doubles upon binding the clinically important immunosuppressant cyclosporin A (CsA). Trp121 is in close contact to the bound CsA and is well-conserved in almost all immunophilins. The enhancement of the fluorescence intensity upon binding CsA is investigated by steady-state and time-resolved fluorescence measurements. The crystal structures of hCypA and the complex hCypA-CsA are compared. Only Glu120 is strongly influenced by the binding of CsA. The distance between the indole ring and the carboxylate group doubles during complexation. The influence of Glu120 on the fluorescence properties of Trp121 was investigated by pH-titration, and by substituting glutamate into an aspartate and an alanine residue. The fluorescence measurements on the glutamate mutants reveal that the carboxylate group influences the fluorescence properties of Trp121 to a limited extent. The major effect of CsA binding, however, consists in a reshuffling of the populations of microconformations of Trp121 leading to a selective increase of the 1.5 ns lifetime component. This selection is also accompanied by a decreased polarity of the environment and an increase in the radiative rate constant.  相似文献   

5.
Trp120 of Aspergillus awamori glucoamylase has previously been shown by chemical modification to be essential for activity and tentatively to be located near subsite 4 of the active site. To further test its role, restriction sites were inserted in the cloned A.awamori gene around the Trp120 coding region, and cassette mutagenesis was used to replace it with His, Leu, Phe and Tyr. All four mutants displayed 2% or less of the maximal activity (kcat) of wild-type glucoamylase towards maltose and maltoheptaose. Michaelis constants (KM) of mutants decreased 2- to 3-fold for maltose and were essentially unchanged for maltoheptaose compared with the wild type, except for a greater than 3-fold decrease for maltoheptaose with the Trp120----Tyr mutant. This mutant also bound isomaltose more strongly and had more selectivity for its hydrolysis than wild-type glucoamylase. A subsite map generated from malto-oligosaccharide substrates having 2-7 D-glucosyl residues indicated that subsites 1 and 2 had greater affinity for D-glucosyl residues in the Trp120----Tyr mutant than in wild-type glucoamylase. These results suggest that Trp120 from a distant subsite is crucial for the stabilization of the transition-state complex in subsites 1 and 2.  相似文献   

6.
Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue.  相似文献   

7.
To obtain information on the structural and functional role of highly conserved amino acid residues in the B870 alpha and beta light-harvesting polypeptides of Rhodobacter capsulatus, site-directed mutagenesis was performed. 18 mutants with single amino acid substitutions at nine different positions in the B870 antenna polypeptides were prepared in a B800-850-lacking strain. The characterization of the resulting phenotypes was based on a quantification of the core-complex elements (reaction center, light-harvesting polypeptides, bacteriochlorophyll a and carotenoid) and the core-complex spectral characteristics (absorption maximum, absorption coefficient and fluorescence intensity). These data generally showed that strong structural effects were caused by the amino acid substitutions. Thus, the three tryptophan exchanges at the position alpha 8 resulted in either the absence of a core complex (alpha Trp8----Leu), the absence of the core antenna (alpha Trp8----Ala) or a reduction in the carotenoid content (alpha Trp8----Tyr). Likewise, the mutants alpha Pro13Gly (i.e. alpha Pro13----Gly), beta Gly10Val and alpha Phe23Ala demonstrated an abnormal protein/pigment ratio in the core antenna, while a drastically reduced antenna size resulted from the amino acid exchange beta Arg45Asp. In contrast to the structural effects, the absorption maxima and the fluorescence intensities of the mutant antennae differed only slightly from the wild type. The strongest blue shift of the bacteriochlorophyll a (8-11 nm) was induced by substitutions of the Trp at position alpha 43 (alpha Trp43----Ala, Leu or Tyr). Contrary to the other spectral effects, the absorption coefficient of bacteriochlorophyll a was strongly influenced by the amino acid substitutions and varied by 1.6-times less (beta Arg45Asp) and 1.3-times greater (alpha Phe25Ala) than normal. The antenna-free mutant, alpha Trp8Ala, yielded a high rate of B800-850 revertants during phototrophic growth, indicating a direct energy transfer from the B800-850 antenna to the reaction center in these strains. Although conditions for growth were generally observed to influence phenotypic expression, the structural as well as spectral effects were demonstrated to differ to the greatest extent between chemotrophically grown and phototrophically grown cells.  相似文献   

8.
The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.  相似文献   

9.
In order to prepare a completely light-stable rhodopsin, we have synthesized an analog, II, of 11-cis retinal in which isomerization at the C11-C12 cis-double bond is blocked by formation of a cyclohexene ring from the C10 to C13-methyl. We used this analog to generate a rhodopsin-like pigment from opsin expressed in COS-1 cells and opsin from rod outer segments (Bhattacharya, S., Ridge, K.D., Knox, B.E., and Khorana, H. G. (1992) J. Biol. Chem. 267, 6763-6769). The pigment (lambda max, 512 nm) formed from opsin and analog II (rhodospin-II) showed ground state properties very similar to those of rhodopsin, but was not entirely stable to light. In the present work, 12 opsin mutants (Ala-117----Phe, Glu-122----Gln(Ala, Asp), Trp-126----Phe(Leu, Ala), Trp-265----Ala(Tyr, Phe), Tyr-268----Phe, and Ala-292----Asp), where the mutations were presumed to be in the retinal binding pocket, were reconstituted with analog II. While all mutants formed rhodopsin-like pigments with II, blue-shifted (12-30 nm) chromophores were obtained with Ala-117----Phe, Glu-122----Gln(Ala), Trp-126----Leu(Ala), and Trp-265----Ala(Tyr, Phe) opsins. The extent of chromophore formation was markedly reduced in the mutants Ala-117----Phe and Trp-126----Ala. Upon illumination, the reconstituted pigments showed varying degrees of light sensitivity; the mutants Trp-126----Phe(Leu) showed light sensitivity similar to wild-type. Continuous illumination of the mutants Glu-122----Asp, Trp-265----Ala, Tyr-268----Phe, and Ala-292----Asp resulted in hydrolysis of the retinyl Schiff base. Markedly reduced light sensitivity was observed with the mutant Trp-265----Tyr, while the mutant Trp-265----Phe was light-insensitive. Consistent with this result, the mutant Trp-265----Phe showed no detectable light-dependent activation of transducin or phosphorylation by rhodopsin kinase.  相似文献   

10.
Sperm whale myoglobin mutants were constructed using site-directed mutagenesis to replace the highly conserved distal histidine residue (His(E7)-64). His-64 was substituted with Gly, Val, Phe, Cys, Met, Lys, Arg, Asp, Thr, and Tyr, and all 10 mutant proteins expressed to approximately 10% of the total soluble cell protein in Escherichia coli as heme containing myoglobin. With the exception of His-64----Tyr, which did not form a stable oxygen (O2) complex, all mutant proteins could be reduced and bound O2 and carbon monoxide (CO) reversibly. However, removal of the distal histidine increased the rate of autooxidation 40-350-fold. The His-64----Gly, Val, Phe, Met, and Arg mutants all showed markedly increased O2 dissociation rate constants which were approximately 50-1500-fold higher than those for wild-type myoglobin and increased O2 association rate constants which were approximately 5-15-fold higher than those for the native protein. All mutants studied (except His-64----Tyr) showed approximately 10-fold increased CO association rates and relatively unchanged CO dissociation rates. These altered O2 and CO association and dissociation rate constants resulted in 3-14-fold increased CO affinities, 10-200-fold decreased O2 affinities, and 50-380-fold greater M (KCO/KO2) values for the mutants compared to the wild-type protein. Thus, the distal histidine of myoglobin discriminates between CO and O2 binding by both sterically hindering bound CO and stabilizing bound O2 through hydrogen bonding. The increased autooxidation rates observed for the mutants appear to be due to a decrease in oxygen affinity and an increase in solvent anion accessibility to the distal pocket.  相似文献   

11.
A synthetic gene encoding the histone-like DNA-binding protein HBsu from Bacillus subtilis has been expressed in Escherichia coli. Yields of the purified protein are at least 20 mg/l culture medium. The recombinant HBsu protein is chromatographically, immunologically and functionally identical with the authentic wild-type protein. N-terminal sequencing of the purified protein confirms the fidelity of expression of the synthetic gene in E. coli. Site-directed mutagenesis of the synthetic gene was employed to replace several amino acid residues of HBsu protein with tryptophan to facilitate the determination of DNA-binding parameters by fluorescence spectroscopy. According to gel-retardation experiments, the mutant protein [Phe47----Trp]HBsu shows identical DNA binding to wild-type HBsu protein. Analysis of fluorescence binding data reveals that [Phe47----Trp]HBsu binds double-stranded DNA with a dissociation constant in the micromolar range. Computer-assisted fit of binding models to the experimental data renders positive cooperativity of binding unlikely. A dimer of [Phe47----Trp]HBsu appears to contact three or four base pairs of DNA. These results are in partial disagreement with earlier measurements on closely homologous proteins which tended to show cooperative binding and a longer DNA contact region.  相似文献   

12.
R S Lloyd  M L Augustine 《Proteins》1989,6(2):128-138
Previous structure/function analyses of the DNA repair enzyme, T4 endonuclease V, have suggested that the extreme carboxyl portion of the enzyme is associated with pyrimidine dimer-specific binding (Recinos and Lloyd, and Stump and Lloyd, Biochemistry 27:1832-1838 and 1839-1843, 1988, respectively). Within the final 11 amino acids there are 5 aromatic, 2 basic, and no acidic residues and it has been proposed that these residues stack with and electrostatically interact with the kinked DNA at the site of a pyrimidine dimer. The role of the tyrosine residue at position 129 has been investigated by oligonucleotide site-directed mutagenesis in which the codon for Tyr-129 has been altered to reflect conservative changes of Trp and Phe and more dramatic changes of Ser, a stop codon, deletion of the codon or introduction of a frameshift. Both changes to the aromatic amino acids resulted in proteins which accumulated well in E. coli and not only significantly enhanced the UV survival of repair-deficient cells but also complemented a defective denV gene within UV-irradiated T4 phage. Partially purified preparations of the Tyr-129----Trp and Tyr-129----Phe mutants were assayed for their ability to processively incise UV-irradiated plasmid DNA (a nicking reaction carried out at low 25 mM salt concentrations). The mutant enzymes Tyr-129----Phe and Tyr-129----Trp displayed a 1000% and 500% enhanced specific nicking activity, respectively. These reactions were also shown to be completely processive. Assays performed at higher (100 mM) salt concentrations reduced the specific activities of the mutant enzymes approximately to that of wild type for the Tyr-129----Phe mutant and to 20% that of wild type for the Tyr-129----Trp mutant.  相似文献   

13.
We have examined the interaction of thrombin with fibrinogen A alpha chain residues 7-16. Using genetically engineered constructions, we have synthesized in Escherichia coli a fibrinogen A alpha 1-50 fusion protein and seven mutant proteins with single amino acid substitutions. These are: Asp7----Ala, Phe8----Tyr, Glu11----Ala, Gly12----Val, Gly13----Val, Gly14----Val, and Arg16----Leu. Competitive immunoassay of cell lysates showed that all the mutations but one, Arg16----Leu, altered the structure of the protein such that cross-reactivity with the A alpha-specific monoclonal antibody, Y18, was significantly reduced. The fusion proteins were purified and analyzed as thrombin inhibitors and substrates. All the fusion proteins are competitive inhibitors of the amidolytic hydrolysis of Spectrozyme TH, a thrombin-specific chromogenic substrate, with inhibition constants corresponding to that for fibrinogen. We conclude that these 7 amino acid substitutions do not alter thrombin binding to the fusion proteins. The fusion proteins were tested as substrates by monitoring thrombin-dependent peptide release. The natural sequence and three mutants, Asp7----Ala, Glu11----Ala, and Gly14----Val, are good substrates. The other mutants are either poor substrates or are not cleaved by thrombin within A alpha 1-50. These results indicate that residues between Asp7 and Arg16 are critical to efficient peptide hydrolysis, whereas residues outside this region are critical to thrombin binding.  相似文献   

14.
A series of radical transitions, Br2-.----Met(S therefore Br)----Trp(indolyl)----Tyr (phenoxyl), has been demonstrated by pulse radiolysis of N2O-saturated aqueous solutions containing Br-, Met-Gly and Trp-(Gly)2-Tyr at pH 6.7. The intramolecular Met(S therefore Br)----Trp(indolyl) transition in the dipeptide Met-Trp is shown to proceed via the Trp+. radical cation, with a rate constant of k approximately 10(7)s-1, consistent with an electron transfer. Br2-.-attack upon ribonuclease A (RNase) leads to a fast Met(S therefore Br)----Tyr(phenoxyl) process, k = (4.0 +/- 1.0) X 10(5)s-1, probably involving the solvent-exposed Met-29 and the adjacent Tyr-25. Phenoxyl dimerization in the RNase system produces the characteristic o,o'-biphenol fluorescence, but a competing interaction of the Tyr-25(phenoxyl) with the 26-84 disulphide group also appears possible.  相似文献   

15.
Human pancreatic lipase (HPL, triacylglycerol acylhydrolase, EC 3.1.1.3) is a carboxyl esterase which hydrolyzes insoluble emulsified triglycerides and is essential for the efficient digestion of dietary fats. Though the three-dimensional structure of this enzyme has been determined, monitoring the conformational changes that may accompany the binding of various substrates and inhibitors is still of interest. Because of its sensitivity and ease of use, fluorescence spectroscopy of the intrinsic Trp residues is ideally suited for this purpose. However, the presence of seven Trp residues spread all over the HPL structure renders the interpretation of the fluorescence changes difficult with respect to the identification and location of the conformational or environmental changes taking place at the various Trp residues. In this context, the aim of this work was to investigate the contribution of the individual Trp residues to the fluorescence properties of HPL. To this end, we analyzed the steady-state and time-resolved fluorescence parameters of five single-point mutants in which one Trp residue was substituted with a weakly fluorescent Phe residue. In addition to the Trp residues at positions 30, 86, and 252, strategically located with respect to the active site, we also mutated Trp residues at positions 17 and 402, as representative residues of the HPL N- and C-terminal domains, respectively. Taken together, our data suggested that the solvent-exposed Trp30 residue contributed to at least 44% of the overall fluorescence of wild-type HPL. Moreover, we found that the long-lived fluorescence lifetime (6.77 ns) of wild-type HPL could be specifically attributed to Trp30, a feature that enables selective monitoring of its environmental changes. Additionally, Trp residues at positions 17 and 402 strongly contributed to the 1.61 ns lifetime of HPL, while Trp residues at positions 86 and 252 contributed to the 0.29 ns lifetime.  相似文献   

16.
Mutants of the dimeric Escherichia coli trp aporepressor are constructed by replacement of the two tryptophan residues in each subunit in order to assess the effects on equilibrium and kinetic fluorescence properties of the folding reaction. The three kinetic phases detected by intrinsic tryptophan fluorescence in refolding of the wild-type aporepressor are also observed in folding of both Trp 19 to Phe and Trp 99 to Phe single mutants, demonstrating that these phases correspond to global rather than local conformational changes. Comparison of equilibrium fluorescence (Royer, C.A., Mann, C.J., & Matthews, C.R., 1993, Protein Sci. 2, 1844-1852) and circular dichroism transition curves induced by urea shows that replacement of either Trp 19 or Trp 99 results in noncoincident behavior. Unlike the wild-type protein (Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020), tertiary and/or quaternary structures are disrupted at lower denaturant concentration than is secondary structure. The equilibrium results can be interpreted in terms of enhancement in the population of a monomeric folding intermediate in which the lone tryptophan residue is highly exposed to solvent, but in which substantial secondary structure is retained. The location of both mutations at the interface between the two subunits (Zhang, R.G., et al., 1987, Nature 327, 591-597) provides a simple explanation for this phenomenon.  相似文献   

17.
Wyman AJ  Popelkova H  Yocum CF 《Biochemistry》2008,47(24):6490-6498
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.  相似文献   

18.
Resonance Raman and infrared spectra and the CO dissociation rates (k(off)) were measured in Coprinus cinereus peroxidase (CIP) and several mutants in the heme binding pocket. These mutants included the Asp245Asn, Arg51Leu, Arg51Gln, Arg51Asn, Arg51Lys, Phe54Trp, and Phe54Val mutants. Binding of CO to CIP produced different CO adducts at pH 6 and 10. At pH 6, the bound CO is H-bonded to the protonated distal His55 residue, whereas at alkaline pH, the vibrational signatures and the rate of CO dissociation indicate a distal side which is more open or flexible than in other plant peroxidases. The distal Arg51 residue is important in determining the rate of dissociation in the acid form, increasing by 8-17-fold in the Arg51 mutants compared to that for the wild-type protein. Replacement of the distal Phe with Trp created a new acid form characterized by vibrational frequencies and k(off) values very similar to those of cytochrome c peroxidase.  相似文献   

19.
The importance of various residues in the Streptomyces R61 penicillin-sensitive DD-peptidase has been assessed by site-directed mutagenesis. The replacement of the active Ser62 by a Cys residue yielded an inactive protein which was also unable to recognize penicillin. The activity of the Lys65----Arg mutant with the peptide and thiolester substrates was decreased 100-200-fold and the rate of penicillin inactivation was decreased 20,000-fold or more. The mutant thus behaved as a poor, but penicillin-resistant, DD-peptidase. The other studied mutations, the mutations Phe58----Leu, Tyr90----Asn, Thr101----Asn, Phe164----Ala, Asp225----Glu and Asp225----Asn had little influence on the catalytic and penicillin-binding properties. The Asp225 mutants did not exhibit an increased sensitivity to cefotaxime. The Phe164----Ala mutant was significantly more unstable than the wild-type enzyme.  相似文献   

20.
Chen J  Flaugh SL  Callis PR  King J 《Biochemistry》2006,45(38):11552-11563
Quenching of the fluorescence of buried tryptophans (Trps) is an important reporter of protein conformation. Human gammaD-crystallin (HgammaD-Crys) is a very stable eye lens protein that must remain soluble and folded throughout the human lifetime. Aggregation of non-native or covalently damaged HgammaD-Crys is associated with the prevalent eye disease mature-onset cataract. HgammaD-Crys has two homologous beta-sheet domains, each containing a pair of highly conserved buried tryptophans. The overall fluorescence of the Trps is quenched in the native state despite the absence of the metal ligands or cofactors. We report the results of detailed quantitative measurements of the fluorescence emission spectra and the quantum yields of numerous site-directed mutants of HgammaD-Crys. From fluorescence of triple Trp to Phe mutants, the homologous pair Trp68 and Trp156 were found to be extremely quenched, with quantum yields close to 0.01. The homologous pair Trp42 and Trp130 were moderately fluorescent, with quantum yields of 0.13 and 0.17, respectively. In an attempt to identify quenching and/or electrostatically perturbing residues, a set of 17 candidate amino acids around Trp68 and Trp156 were substituted with neutral or hydrophobic residues. None of these mutants showed significant changes in the fluorescence intensity compared to their own background. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations with the four different excited Trps as electron donors strongly indicate that electron transfer rates to the amide backbone of Trp68 and Trp156 are extremely fast relative to those for Trp42 and Trp130. This is in agreement with the quantum yields measured experimentally and consistent with the absence of a quenching side chain. Efficient electron transfer to the backbone is possible for Trp68 and Trp156 because of the net favorable location of several charged residues and the orientation of nearby waters, which collectively stabilize electron transfer electrostatically. The fluorescence emission spectra of single and double Trp to Phe mutants provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain. The backbone conformation of tryptophans in HgammaD-Crys may have evolved in part to enable the lens to become a very effective UV filter, while the efficient quenching provides an in situ mechanism to protect the tryptophans of the crystallins from photochemical degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号