首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.  相似文献   

2.
D M Lowe  G Winter  A R Fersht 《Biochemistry》1987,26(19):6038-6043
Residues Asp-78 and Gln-173 of the tyrosyl-tRNA synthetase of Bacillus stearothermophilus form part of the binding site for tyrosine by making hydrogen bonds with the alpha-ammonium group. Asp-38 is close enough to the group to make an important electrostatic contribution. Unlike other residues in the active site that have been studied by site-directed mutagenesis, Asp-38, Asp-78, and Gln-173 are part of hydrogen-bonded networks. Each of these residues has been mutated to an alanine, and the resultant mutants have been studied by kinetics to construct the difference energy diagrams for the formation of tyrosyl adenylate. In each example, the binding of tyrosine is weakened by about 2.5 kcal mol-1. But, unlike previous mutants, the dissociation of the second substrate, in this case ATP, is also seriously affected, being weakened by some 2 kcal mol-1 for TyrTS(Ala-78) and TyrTS(Ala-173). The energy of the transition state for the formation of tyrosyl adenylate is raised by 7.8 kcal mol-1 for the former and 4.5 kcal mol-1 for the latter mutant. Addition of these mutants to linear free energy plots constructed for the nondisruptive mutants in the accompanying study [Fersht, A. R., Leatherbarrow, R. J., & Wells, T. N. C. (1987) Biochemistry (preceding paper in this issue)] reveals large deviations of the data for TyrTS(Ala-38) and TyrTS(Ala-78) from the regression line. These thus belong to a different class of mutations from previous nondisruptive examples. This observation combined with the structural evidence and difference energy diagrams strongly suggests that the mutations Asp----Ala-38 and Asp----Ala-78 are disruptive in nature.  相似文献   

3.
Human glutathione transferase pi (GST pi) has been crystallized as a homodimer, with a subunit molecular mass of approximately 23 kDa; however, in solution the average molecular mass depends on protein concentration, approaching that of monomer at <0.03 mg/ml, concentrations typically used to measure catalytic activity of the enzyme. Electrostatic interaction at the subunit interface greatly influences the dimer-monomer equilibrium of the enzyme and is an important force for holding subunits together. Arg-70, Arg-74, Asp-90, Asp-94, and Thr-67 were selected as target sites for mutagenesis, because they are at the subunit interface. R70Q, R74Q, D90N, D94N, and T67A mutant enzymes were constructed, expressed in Escherichia coli, and purified. The construct of N-terminal His tag enzyme facilitates the purification of GST pi, resulting in a high yield of enzyme, but does not alter the kinetic parameters or secondary structure of the enzyme. Our results indicate that these mutant enzymes show no appreciable changes in K(m) for 1-chloro-2,4-dinitrobenzene and have similar CD spectra to that of wild-type enzyme. However, elimination of the charges of either Arg-70, Arg-74, Asp-90, or Asp-94 shifts the dimer-monomer equilibrium toward monomer. In addition, replacement of Asp-94 or Arg-70 causes a large increase in the K(m)(GSH), whereas substitution for Asp-90 or Arg-74 primarily results in a marked decrease in V(max). The GST pi retains substantial catalytic activity as a monomer probably because the glutathione and electrophilic substrate sites (such as for 1-chloro-2,4-dinitrobenzene) are predominantly located within each subunit.  相似文献   

4.
The rhodopsin crystal structure reveals that intradiscal loop E-2 covers the 11-cis-retinal, creating a "retinal plug." Recently, we noticed the ends of loop E-2 are linked by an ion pair between residues Arg-177 and Asp-190, near the highly conserved disulfide bond. This ion pair appears biologically significant; it is conserved in almost all vertebrate opsins and may occur in other G-protein-coupled receptors. We report here that the Arg-177/Asp-190 ion pair is critical for the folding and stability of dark state rhodopsin. We find ion pair mutants that regenerate with retinal are functionally and spectrally wild-type-like yet thermally unstable in their dark state because of rapid hydrolysis of the retinal Schiff base linkage. Surprisingly, Arrhenius analysis indicates that the activation energies for the hydrolysis process are similar between the ion pair mutants and wild-type rhodopsin. Furthermore, the ion pair mutants do not show increased reactivity toward hydroxylamine, suggesting that their instability is not caused by an increased exposure to bulk solvent. Our results indicate that the loop E-2 ion pair is important for rhodopsin stability and thus suggest that retinitis pigmentosa observed in patients with Asp-190 mutations may in part be the result of thermally unstable rhodopsin proteins.  相似文献   

5.
Luisi DL  Snow CD  Lin JJ  Hendsch ZS  Tidor B  Raleigh DP 《Biochemistry》2003,42(23):7050-7060
Experimental and theoretical double-mutant cycles have been used to investigate a salt bridge in the N-terminal domain of the protein L9. Aspartic acid 23 is the only acidic residue involved in a well-defined pairwise interaction, namely, a partially solvent-exposed salt bridge with the protonated N-terminus of the protein. Mutations were studied in which Asp 23 was substituted by alanine, asparagine, and nitrile alanine. Interactions with the N-terminus were probed by comparisons between proteins with a protonated and acetylated N-terminus. The mutants were all folded, and the structures were unchanged from wild type as judged by CD and 2-D NMR. The coupling free energy between the N-terminus and the side chain of Asp 23 measured through double-mutant cycle analysis was favorable and ranged from -0.7 to -1.7 kcal mol(-)(1), depending upon the set of mutants used. This relatively large coupling free energy for a surface salt bridge likely arises from geometric factors that reduce the entropy loss associated with salt-bridge formation and from structural relaxation in the mutants. Coupling free energies computed with continuum electrostatic calculations agreed well with the experimental values when full account was taken of all potential interactions, particularly those involving Asp 23 and the acetylated N-terminus as well as interactions with solvent. The measured and calculated coupling free energy decreased only slightly when the salt concentration was increased from 100 to 750 mM NaCl. The calculations suggest that the coupling free energy between D23 and the N-terminus measured through the experimental double-mutant cycle analysis is significantly smaller than the actual interaction free energy between the groups in the wild-type structure because of the inapplicability of assumptions frequently used to interpret double-mutant cycles.  相似文献   

6.
M R Gibbs  P C Moody  A G Leslie 《Biochemistry》1990,29(51):11261-11265
The crystal structure of the Asp-199----Asn mutant of chloramphenicol acetyltransferase (CAT) has been determined to 2.35-A resolution. In wild-type CAT Asp-199 is involved in a fully buried intrasubunit salt bridge with Arg-18, an interaction that is adjacent to the active site. Replacement of aspartate with asparagine by site-directed mutagenesis disrupts this salt bridge and causes extensive conformational changes within the active site. The imidazole group of the catalytically essential His-195 is reoriented, with the loss of interactions thought to stabilize the preferred tautomer of this residue. Arg-18 and Asn-199 form three new intersubunit interactions as a result of large side-chain torsion angle changes which cause the movement of two polypeptide loops, some residues of which are up to 20 A away from the site of the mutation. The new interactions of Arg-18 and Asn-199 compensate for the loss of the buried salt bridge and afford near-wild-type thermostability to Asn-199 CAT, albeit with a greatly reduced activity.  相似文献   

7.
Animal catechol O-methyltransferases and plant caffeoyl-coenzyme A O-methyltransferases share about 20% sequence identity and display common structural features. The crystallographic structure of rat liver catechol O-methyltransferase was used as a template to construct a homology model for tobacco caffeoyl-coenzyme A O-methyltransferase. Integrating substrate specificity data, the three-dimensional model identified several amino acid residues putatively involved in substrate binding. These residues were mutated by a polymerase chain reaction method and wild-type and mutant enzymes were each expressed in Escherichia coli and purified. Substitution of Arg-220 with Thr resulted in the total loss of enzyme activity, thus indicating that Arg-220 is involved in the electrostatic interaction with the coenzyme A moiety of the substrate. Changes of Asp-58 to Ala and Gln-61 to Ser were shown to increase K(m) values for caffeoyl coenzyme A and to decrease catalytic activity. Deletions of two amino acid sequences specific for plant enzymes abolished activity. The secondary structures of the mutants, as measured by circular dichroism, were essentially unperturbed as compared with the wild type. Similar changes in circular dichroism spectra were observed after addition of caffeoyl coenzyme A to the wild-type enzyme and the substitution mutants but not in the case of deletion mutants, thus revealing the importance of these sequences in substrate-enzyme interactions.  相似文献   

8.
Studies of bacteriorhodopsin have indicated that the charge environment of the protonated Schiff base consists of residues Asp-85, Asp-212, and Arg-82. As shown recently (Marti, T., R?sselet, S. J., Otto, H., Heyn, M. P., and Khorana, H. G. (1991) J. Biol. Chem. 266, 18674-18683), in the double mutant Asp-85----Asn/Asp-212----Asn chromophore formation is restored in the presence of salts, suggesting that exogenous anions function as counterions to the protonated Schiff base. To investigate the role of Arg-82 and of the Schiff base in anion binding, we have prepared the triple mutant Arg-82----Gln/Asp-85----Asn/Asp-212----Asn and compared its properties with those of the Asp-85----Asn/Asp-212----Asn double mutant. Regeneration of the chromophore with absorption maximum near 560 nm occurs in the triple mutant in the presence of millimolar salt, whereas in the double mutant molar salt concentrations are required. Spectrometric titrations reveal that the pKa of Schiff base deprotonation is markedly reduced from 11.3 for the wild type to 4.9 for the triple mutant in 1 mM NaCl and to 5.5 for the double mutant in 10 mM NaCl. In both mutants, increasing the chloride concentration promotes protonation of the chromophore and results in a continuous rise of the Schiff base pKa, yielding a value of 8.4 and 7.6, respectively, in 4 M NaCl. The absorption maximum of the two mutants shows a progressive red shift, as the ionic radius of the halide increases in the sequence fluoride, chloride, bromide, and iodide. An identical spectral correlation in the presence of halides is observed for the acid-purple form of bacteriorhodopsin. We conclude, therefore, that upon neutralization of the two counterions Asp-85 and Asp-212 by mutation or by protonation at low pH, exogenous anions substitute as counterions by directly binding to the protonated Schiff base. This interaction may provide the basis for the proposed anion translocation by the acid-purple form of bacteriorhodopsin as well as by the related halorhodopsin.  相似文献   

9.
Results of the single molecule force spectroscopy study of specific interactions between ribonuclease barnase and its inhibitor barstar are presented. Experimental data obtained for the force loading rate ranging 2-70 nN/s are well approximated by a single straight line, from which the dissociation barrier of the width of 0.12 nm and height of 0.75-0.85 × 10(-19)J can be inferred. The measured value of specific interaction does not depend on the NaCl concentration. This apparently contradicts the well-known dependence of the binding energy of this pair on the salt concentration, but such a "contradiction" is explained by the insensitivity of the force spectroscopy data to the relatively long-range electrostatic interaction. The latter essentially contributes to the value of barnase-barstar binding energy revealed by biochemical measurements, and it is exactly this electrostatic interaction which is influenced by the salt concentration.  相似文献   

10.
The extracellular ribonuclease barnase and its intracellular inhibitor barstar bind fast and with high affinity. Although extensive experimental and theoretical studies have been carried out on this system, it is unclear what the relative importance of different contributions to the high affinity is and whether binding can be improved through point mutations. In this work, we first applied Poisson-Boltzmann electrostatic calculations to 65 barnase-barstar complexes with mutations in both barnase and barstar. The continuum electrostatic calculations with a van der Waals surface dielectric boundary definition result in the electrostatic interaction free energy providing the dominant contribution favoring barnase-barstar binding. The results show that the computed electrostatic binding free energy can be improved through mutations at W44/barstar and E73/barnase. Furthermore, the determinants of binding affinity were quantified by applying COMparative BINding Energy (COMBINE) analysis to derive quantitative structure-activity relationships (QSARs) for the 65 complexes. The COMBINE QSAR model highlights approximately 20 interfacial residue pairs as responsible for most of the differences in binding affinity between the mutant complexes, mainly due to electrostatic interactions. Based on the COMBINE model, together with Brownian dynamics simulations to compute diffusional association rate constants, several mutants were designed to have higher binding affinities than the wild-type proteins.  相似文献   

11.
Salt bridges in proteins are bonds between oppositely charged residues that are sufficiently close to each other to experience electrostatic attraction. They contribute to protein structure and to the specificity of interaction of proteins with other biomolecules, but in doing so they need not necessarily increase a protein's free energy of unfolding. The net electrostatic free energy of a salt bridge can be partitioned into three components: charge-charge interactions, interactions of charges with permanent dipoles, and desolvation of charges. Energetically favorable Coulombic charge-charge interaction is opposed by often unfavorable desolvation of interacting charges. As a consequence, salt bridges may destabilize the structure of the folded protein. There are two ways to estimate the free energy contribution of salt bridges by experiment: the pK(a) approach and the mutation approach. In the pK(a) approach, the contribution of charges to the free energy of unfolding of a protein is obtained from the change of pK(a) of ionizable groups caused by altered electrostatic interactions upon folding of the protein. The pK(a) approach provides the relative free energy gained or lost when ionizable groups are being charged. In the mutation approach, the coupling free energy between interacting charges is obtained from a double mutant cycle. The coupling free energy is an indirect and approximate measure of the free energy of charge-charge interaction. Neither the pK(a) approach nor the mutation approach can provide the net free energy of a salt bridge. Currently, this is obtained only by computational methods which, however, are often prone to large uncertainties due to simplifying assumptions and insufficient structural information on which calculations are based. This state of affairs makes the precise thermodynamic quantification of salt bridge energies very difficult. This review is focused on concepts and on the assessment of experimental methods and does not cover the vast literature.  相似文献   

12.
Electrostatic stabilization in four-helix bundle proteins.   总被引:5,自引:3,他引:2       下载免费PDF全文
Charge substitutions generated by site-directed mutagenesis at the termini of adjacent anti-parallel alpha-helices in a four-helix bundle protein were used to determine a precise value for the contribution of indirect charge-charge interactions to overall protein stability, and to simulate the electrostatic effects of alpha-helix macrodipoles. Thermodynamic double mutant cycles were constructed to measure the interaction energy between such charges on adjacent anti-parallel helices in the four-helix bundle cytochrome b562 from Escherichia coli. Previously, theoretical calculations of helix macrodipole interactions using modeled four-helix bundle proteins have predicted values ranging over an order of magnitude from 0.2 to 2.5 kcal/mol. Our system represents the first experimental evidence for electrostatic interactions such as those between partial charges due to helix macrodipole charges. At the positions mutated, we have measured a favorable interaction energy of 0.6 kcal/mol between opposite charges simulating an anti-parallel helix pair. Pairs of negative or positive charges simulating a parallel orientation of helices produce an unfavorable interaction of similar magnitude. The interaction energies show a strong dependence upon ionic strength, consistent with an electrostatic effect. Indirect electrostatic contacts do appear to confer a limited stabilization upon the association of anti-parallel packing of helices, favoring this orientation by as much as 1 kcal/mol at 20 mM K phosphate.  相似文献   

13.
Cu, Zn superoxide dismutase protects cells from oxidative damage by removing superoxide radicals in one of the fastest enzyme reactions known. The redox reaction at the active-site Cu ion is rate-limited by diffusion and enhanced by electrostatic guidance. To quantitatively define the electrostatic and mechanistic contributions of sequence-invariant Arg-143 in human Cu, Zn superoxide dismutase, single-site mutants at this position were investigated experimentally and computationally. Rate constants for several Arg-143 mutants were determined at different pH and ionic strength conditions using pulse radiolytic methods and compared to results from Brownian dynamics simulations. At physiological pH, substitution of Arg-143 by Lys caused a 2-fold drop in rate, neutral substitutions (Ile, Ala) reduced the rate about 10-fold, while charge-reversing substitutions (Asp, Glu) caused a 100-fold decrease. Position 143 mutants showed pH dependencies not seen in other mutants. At low pH, the acidic residue mutations exhibited pro-tonation/deprotonation effects. At high pH, all enzymes showed typical decreases in rate except the Lys mutant in which the rate dropped off at an unusually low pH. Increasing ionic strength at acidic pH decreased the rates of the wild-type enzyme and Lys mutant, while the rate of the Glu mutant was unaffected. Increasing ionic strength at higher pH (>10) increased the rates of the Lys and Glu mutants while the rate of the wild-type enzyme was unaffected. Reaction simulations with Brownian dynamics incorporating electrostatic effects tested computational predictability of ionic strength dependencies of the wild-type enzyme and the Lys, Ile, and Glu mutants. The calculated and experimental ionic strength profiles gave similar slopes in all but the Glu mutant, indicating that the electrostatic attraction of the substrate is accurately modeled. Differences between the calculated and experimental rates for the Glu and Lys mutants reflect the mechanistic contribution of Arg-143. Results from this joint analysis establish that, aside from the Cu ligands, Arg-143 is the single most important residue in Cu, Zn superoxide dismutase both electrostatically and mechanistically, and provide an explanation for the evolutionary selection of arginine at position 143. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Many of the interactions that stabilize proteins are co-operative and cannot be reduced to a sum of pairwise interactions. Such interactions may be analysed by protein engineering methods using multiple thermodynamic cycles comprising wild-type protein and all combinations of mutants in the interacting residues. There is a triad of charged residues on the surface of barnase, comprising residues Asp8, Asp12 and Arg110, that interact by forming two exposed salt bridges. The three residues have been mutated to alanine to give all the single, double and triple mutants. The free energies of unfolding of wild-type and the seven mutant proteins have been determined and the results analysed to give the contributions of the residues in the two salt bridges to protein stability. It is possible to isolate the energies of forming the salt bridges relative to the solvation of the separated ions by water. In the intact triad, the apparent contribution to the stabilization energy of the protein of the salt bridge between Asp12 and Arg110 is -1.25 kcal mol-1, whereas that of the salt bridge between Asp8 with Arg110 is -0.98 kcal mol-1. The strengths of the two salt bridges are coupled: the energy of each is reduced by 0.77 kcal mol-1 when the other is absent. The salt-linked triad, relative to alanine residues at the same positions, does not contribute to the stability of the protein since the favourable interactions of the salt bridges are more than offset by other electrostatic and non-electrostatic energy terms. Salt-linked triads occur in other proteins, for example, haemoglobin, where the energy of only the salt-bridge term is important and so the coupling of salt bridges could be of general importance to the stability and function of proteins.  相似文献   

15.
The role of conserved Asp-199 in chloramphenicol acetyltransferase (CAT) has been investigated by site-directed mutagenesis. Substitution of Asp-199 by alanine results in a thermolabile mutant enzyme (Ala-199 CAT) with reduced kcat(13-fold) but similar Km values to wild type CAT. Replacement by asparagine gives rise to a thermostable mutant enzyme (Asn-199 CAT) with much reduced kcat(1500-fold). Furthermore, Asn-199 CAT shows anomalous inactivation kinetics with the affinity reagent 3-(bromo-acetyl)chloramphenicol. These results favor a structural role for Asp-199 rather than a catalytic one, in keeping with crystallographic evidence for involvement of Asp-199 in a tight salt bridge with Arg-18. Replacement of Arg-18 by valine results in a mutant enzyme (Val-18 CAT) with similar properties to Ala-199 CAT. The catalytic imidazole of His-19 appears to be conformationally constrained by hydrogen bonding between N1-H and the carbonyl oxygen of the same residue and by ring stacking with Tyr-25.  相似文献   

16.
A theoretical study of the ion atmosphere contribution to the binding free energy of the lambda repressor-operator complex is presented. The finite-difference form of the Poisson-Boltzmann equation was solved to calculate the electrostatic interaction energy of the amino-terminal domain of the lambda repressor with a 9 or 45 base pair oligonucleotide. Calculations were performed at various distances between repressor and operator as well as at different salt concentrations to determine ion atmosphere contributions to the total electrostatic interaction. Details in the distribution of charges on DNA and protein atoms had a strong influence on the calculated total interaction energies. In contrast, the calculated salt contributions are relatively insensitive to changes in the details of the charge distribution. The results indicate that the ion atmosphere contribution favors association at all protein-DNA distances studied. The theoretical number of ions released upon repressor-operator binding appears to be in reasonable agreement with experimental data.  相似文献   

17.
In a model proposed for the structure of the a-subunit of the Escherichia coli F0F1-ATPase (Howitt, S.M., Gibson, F. and Cox, G.B. (1988) Biochim. Biophys. Acta 936, 74-80), a cluster of charged residues, including one arginine and four aspartic acid residues, lie on the periplasmic side of the membrane. On the cytoplasmic side, three pairs of lysine residues and an arginine residue are present. Site-directed mutagenesis was used to investigate the roles of these residues. It was found that none was directly involved in the proton pore. However, the substitutions of Asp-124 or Asp-44 by asparagine or Arg-140 by glutamine had similar effects in that the membranes from such mutants from which the F1-ATPase was removed were proton-impermeable. A combination of the Asp-44 mutation with either the Asp-124 or Arg-140 mutations in the same strain resulted in complete loss of oxidative phosphorylation. It was tentatively concluded that Asp-124 and Arg-140 form a salt bridge, as did Asp-44 with an unknown residue, and these salt bridges were concerned with the maintenance of correct a-subunit structure. Further support for this conclusion was obtained when second site revertants of a Glu-219 to histidine mutant were found to have either histidine or leucine replacing Arg-140. Thus, the lack of the Asp-124/Arg-140 salt bridge might enable repositioning of the helices of the a-subunit such that His-219 becomes a functional component of the proton pore.  相似文献   

18.
The solution structure of the final phosphoryl transfer complex in the glucose-specific arm of the Escherichia coli phosphotransferase system, between enzyme IIAGlucose (IIAGlc) and the cytoplasmic B domain (IIBGlc) of the glucose transporter IICBGlc, has been solved by NMR. The interface (approximately 1200-A2 buried surface) is formed by the interaction of a concave depression on IIAGlc with a convex protrusion on IIBGlc. The phosphoryl donor and acceptor residues, His-90 of IIAGlc and Cys-35 of IIBGlc (residues of IIBGlc are denoted in italics) are in close proximity and buried at the center of the interface. Cys-35 is primed for nucleophilic attack on the phosphorus atom by stabilization of the thiolate anion (pKa approximately 6.5) through intramolecular hydrogen bonding interactions with several adjacent backbone amide groups. Hydrophobic intermolecular contacts are supplemented by peripheral electrostatic interactions involving an alternating distribution of positively and negatively charged residues on the interaction surfaces of both proteins. Salt bridges between the Asp-38/Asp-94 pair of IIAGlc and the Arg-38/Arg-40 pair of IIBGlc neutralize the accumulation of negative charge in the vicinity of both the Sgamma atom of Cys-35 and the phosphoryl group in the complex. A pentacoordinate phosphoryl transition state is readily accommodated without any change in backbone conformation, and the structure of the complex accounts for the preferred directionality of phosphoryl transfer between IIAGlc and IIBGlc. The structures of IIAGlc.IIBGlc and the two upstream complexes of the glucose phosphotransferase system (EI.HPr and IIAGlc.HPr) reveal a cascade in which highly overlapping binding sites on HPr and IIAGlc recognize structurally diverse proteins.  相似文献   

19.
Aspartate transcarbamylase (EC 2.1.3.2) from E. coli is a multimeric enzyme consisting of two catalytic subunits and three regulatory subunits whose activity is regulated by subunit interactions. Differential scanning calorimetric (DSC) scans of the wild-type enzyme consist of two peaks, each comprised of at least two components, corresponding to denaturation of the catalytic and regulatory subunits within the intact holoenzyme (Vickers et al., J. Biol. Chem. 253 (1978) 8493; Edge et al., Biochemistry 27 (1988) 8081). We have examined the effects of nine single-site mutations in the catalytic chains. Three of the mutations (Asp-100-Gly, Glu-86-Gln, and Arg-269-Gly) are at sites at the C1: C2 interface between c chains within the catalytic subunit. These mutations disrupt salt linkages present in both the T and R states of the molecule (Honzatko et al., J. Mol. Biol. 160 (1982) 219; Krause et al., J. Mol. Biol. 193 (1987) 527). The remainder (Lys-164-Ile, Tyr-165-Phe, Glu-239-Gln, Glu-239-Ala, Tyr-240-Phe and Asp-271-Ser) are at the C1: C4 interface between catalytic subunits and are involved in interactions which stabilize either the T or R state. DSC scans of all of the mutants except Asp-100-Gly and Arg-269-Gly consisted of two peaks. At intermediate concentrations, Asp-100-Gly and Arg-269-Gly had only a single peak near the Tm of the regulatory subunit transition in the holoenzyme, although their denaturational profiles were more complex at high and low protein concentrations. The catalytic subunits of Glu-86-Gln, Lys-164-Ile and Asp-271-Ser appear to be significantly destabilized relative to wild-type protein while Tyr-165-Phe and Tyr-240-Phe appear to be stabilized. Values of delta delta G degree cr, the difference between the subunit interaction energy of wild-type and mutant proteins, evaluated as suggested by Brandts et al. (Biochemistry 28 (1989) 8588) range from -3.7 kcal mol-1 for Glu-86-Gln to 2.4 kcal mol-1 for Tyr-165-Phe.  相似文献   

20.
Co-operative interactions during protein folding.   总被引:9,自引:0,他引:9  
The theory for measuring co-operativity between interactions in proteins by protein engineering experiments is developed by introducing a procedure for analysing increasing orders of synergy in a protein with increasing numbers of residues. The (pairwise) interaction energy (delta 2Gint) between two side-chains may be measured experimentally by a double-mutant cycle consisting of the wild-type protein, the two single mutants and the double mutant. This procedure may be extended to three residues to give a value for delta 3Gint for a triple-mutant cube, and to higher orders using multi-dimensional mutant space. We now show that delta 3Gint is the excess energy of adding all three chains compared with the sum of all the pairwise values of delta 2Gint for each of the constituent double-mutant cycles and the sum of all the single addition energies. This physical interpretation extends to higher orders of mutation. delta nGint (i.e. the interaction energy for n residues), thus, reveals the layers of synergy in interactions as a protein is built up. This procedure is applied to measuring changes in synergy during the refolding of barnase for the triad of salt-linked residues Asp8, Asp12 and Arg110, which are mutated to alanine residues. The value of delta 3Gint in the folded structure is 0.77(+/- 0.06) kcal mol-1 (i.e. the triad is 0.77 kcal mol-1 more stable than expected from the sum of the individual pairwise interactions and single contributions). The value of delta 3Gint is still significant in the transition state for unfolding (0.60(+/- 0.07) kcal mol-1) and in the folding intermediate (0.60(+/- 0.13 kcal mol-1)). These results show that synergistic interactions exist in barnase, in its transition state for unfolding and in a refolding intermediate. A direct measurement of the change of co-operativity between the folded state and the transition state for unfolding shows a decrease of 0.17(+/- 0.04) kcal mol-1, suggesting that the initial stages of protein unfolding may be accompanied by some loosening of structure in parts that still interact. The similar extent of co-operativity in the transition state for unfolding and the intermediate in refolding suggests that the intermediate is homogeneous, at least in the region of the salt-linked triad, as heterogeneity would lower the co-operativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号