首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
2.
3.
Incubation of rat liver plasma membrane produced histone phosphorylating activity at 75 mM Mg2+ in the soluble fraction. The release of the kinase activity was inhibited by leupeptin and bovine pancreatic trypsin inhibitor, suggesting the involvement of membrane-bound protease. When partially purified protein kinase C from rat liver cytosol was treated with the trypsin-like protease purified from rat liver plasma membrane, histone phosphorylating kinase which was independent of Ca2+ and phospholipids, produced with a molecular weight of about 5 X 10(4). These results suggest that membrane-bound, trypsin-like protease activates protein kinase C in plasma membrane and the activated kinase is released from the membrane to the soluble fraction.  相似文献   

4.
Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events.  相似文献   

5.
The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20?mM tris-CaCl2 buffer (pH 8.2) with a flow rate of 0.5?mL min?1. The molecular weight and purity of ~23?kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697?U?mg?1, fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.  相似文献   

6.
Bovine pancreatic trypsin-inhibitor (bPTI) is required for survival of adult rat hepatocytes for more than 2 days in primary cultures in serum-free medium. Of the various protease inhibitors tested, all trypsin inhibitors increased the survival of rat hepatocytes in serum-free medium, their potencies being in the order bPTI greater than alpha 2-plasmin inhibitor greater than leupeptin greater than soybean trypsin inhibitor greater than alpha 1-antitrypsin = alpha 2-macroglobulin. Elastatinal, a specific inhibitor of elastase, was also effective. bPTI did not inhibit the degradation of proteins with short or long lives, suggesting that it did not increase the survival of hepatocytes by inhibiting cellular protein degradation. alpha 2-Plasmin inhibitor immobilized on Sepharose 4B caused dose-dependent increase in survival. Plasma membranes purified from adult rat liver had significant protease activity, about 80% of which was sensitive to bPTI, alpha 2-plasmin inhibitor and leupeptin. From its specificity for substrates and sensitivity to inhibitors, the membrane-bound protease was characterized as a trypsin-like protease. The effects of various inhibitors on the membrane-bound protease correlated well with their abilities to increase survival of rat hepatocytes. Therefore, it seems that bPTI acts on the cell surface and increases hepatocyte survival in serum-free cultures by inhibiting a trypsin-like protease associated with the plasma membranes.  相似文献   

7.
From soluble extract of rat kidney we have previously identified an endothelin degradation enzyme that rapidly and specifically cleaves off the C-terminal tryptophan of endothelin-1, resulting in a peptide that is three orders of magnitude weaker in potency than endothelin-1 in causing smooth muscle contraction. The tissue distribution of this enzyme was examined, and the soluble extracts of rat kidney were found to contain the highest enzyme activity, followed by the spleen and the liver. In contrast, no enzyme activity was detected in the soluble extracts of brain, heart, and lung. The biochemical properties of the partially purified enzyme from kidney were further investigated. The optimal pH of the enzyme was between 5 and 7. The endothelin degrading activity was effectively blocked by thiol protease inhibitors such as benzyloxycarbonyl-Phe-Ala-diazomethyl ketone and p-hydroxymercuribenzoic acid, as well as by phenylmethylsulfonyl fluoride, but not by metalloprotease and other serine protease inhibitors. This enzyme displayed a clear difference in substrate specificity when compared with other thiol proteases such as cathepsin B, cathepsin H, and cathepsin L, known to be present in the kidney. These results suggest that a novel protease with endothelin degrading activity is widely distributed in a number of tissues.  相似文献   

8.
The urokinase plasminogen activator is a trypsin-like serine protease, important in tumor development. Here, we report the synthesis and biochemical evaluation of selective and potent diaryl esters of phosphonic-type inhibitors for urokinase. We have found that the substituted phenyl ester ring has a strong influence on the inhibitory activity of these compounds. This led to the most potent phosphonic inhibitor for uPA synthesized to date.  相似文献   

9.
麻蝇幼虫肠液经硫铵沉淀, DEAE-Sephadex A-25离子交换层析, SBBI-Sepharose 4B亲和层析,分离纯化出一种分子量为 16kD的蛋白酶。底物及抑制剂的特异性表明,该酶为类胰蛋白酶。其能够强烈地降解蛋白酶非专一底物酪蛋白和 Hide powder azure,以及类胰蛋白酶专一底物 Bz-Phe-Val-Arg NA, Bz-Pro-Phe-Arg NA和Bz-Val-Gly-Arg NA.该酶又能被丝氨酸蛋白酶抑制剂PMSF,类胰蛋白酶抑制剂 SB-BI和Leupeptin强烈地抑制。蛋白酶在酸性环境下极不稳定,在弱碱环境(pH8.5-9.5)中活性最高。  相似文献   

10.
The recognition of lysine-type peptidoglycans (PG) by the PG recognition complex has been suggested to cause activation of the serine protease cascade leading to the processing of Sp?tzle and subsequent activation of the Toll signaling pathway. So far, two serine proteases involved in the lysine-type PG Toll signaling pathway have been identified. One is a modular serine protease functioning as an initial enzyme to be recruited into the lysine-type PG recognition complex. The other is the Drosophila Sp?tzle processing enzyme (SPE), a terminal enzyme that converts Sp?tzle pro-protein to its processed form capable of binding to the Toll receptor. However, it remains unclear how the initial PG recognition signal is transferred to Sp?tzle resulting in Toll pathway activation. Also, the biochemical characteristics and mechanism of action of a serine protease linking the modular serine protease and SPE have not been investigated. Here, we purified and cloned a novel upstream serine protease of SPE that we named SAE, SPE-activating enzyme, from the hemolymph of a large beetle, Tenebrio molitor larvae. This enzyme was activated by Tenebrio modular serine protease and in turn activated the Tenebrio SPE. The biochemical ordered functions of these three serine proteases were determined in vitro, suggesting that the activation of a three-step proteolytic cascade is necessary and sufficient for lysine-type PG recognition signaling. The processed Sp?tzle by this cascade induced antibacterial activity in vivo. These results demonstrate that the three-step proteolytic cascade linking the PG recognition complex and Sp?tzle processing is essential for the PG-dependent Toll signaling pathway.  相似文献   

11.
Trypsin-like enzymes from the salivary gland complex (SGC) of Lygus hesperus Knight were partially purified by preparative isoelectric focusing (IEF). Enzyme active against Nalpha-benzoyl-L-arginine-p-nitroanilide (BApNA) focused at approximately pH 10 during IEF. This alkaline fraction gave a single activity band when analyzed with casein zymograms. The serine proteinase inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor, completely inhibited or suppressed the caseinolytic activity in the crude salivary gland extract as well as the IEF-purified sample. Chicken egg white trypsin inhibitor also inhibited the IEF-purified sample but was not effective against a major caseinolytic band in the crude salivary gland extract. These data indicated the presence of serine proteinases in the SGC of L. hesperus. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for serine proteinases in L. hesperus. The encoded trypsin-like protein included amino acid sequence motifs, which are conserved with five homologous serine proteinases from other insects. Typical features of the putative trypsin-like protein from L. hesperus included residues in the serine proteinase active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides.  相似文献   

12.
Abstract A 16kD protease was purified from the gut extract of larvae of Boettcherisca peregrina , after ammonium sulfate precipitation, DEAE-Sephadex A-25 ion-exchange chromatography and SBBI-Sepharose 4B affinity chromatography. The results of substrate and inhibitor specificity indicated that the protease behaved as a trypsin-like protease. It possesses high activity against non-specific substrate casein and Hide powder azure, and against trypsin-specific substrates Bz-Phe-Val-Arg NA, Bz-Pro-Phe-Arg NA and Bz-Val-Gly-Arg NA. It can be strongly inhibited by PMSF, phenymethysulfonyl fluoride (serine protease inhibitor), SBBI, soybean Bowman-Birk inhibitor and Leupeptin (trypsin-specific inhibitor). Activity of this protease was found to be maximal at the alkaline range of pH 8. 5–9. 5.  相似文献   

13.
Leishmania (V) braziliensis is one of the most important ethiologic agents of the two distinct forms of American tegumentary leishmaniasis (cutaneous and mucosal). The drugs of choice used in leishmaniasis therapy are significantly toxic, expensive and are associated with frequent refractory infections. Among the promising new targets for anti-protozoan chemotherapy are the proteases. In this study, serine proteases were partially purified from aqueous, detergent and extracellular extracts of Leishmania braziliensis promastigotes by aprotinin-agarose affinity chromatography. By zymography, the enzymes purified from the aqueous extract showed apparent activity bands of 60 kDa and 45 kDa; of 130 kDa, 83 kDa, 74 kDa and 30 kDa from the detergent extract; and of 62 kDa, 59 kDa, 57 kDa, 49 kDa and 35 kDa from the extracellular extract. All purified proteases exhibited esterase activity against Nalpha-benzoyl-L-arginine ethyl ester hydrochloride and Nalpha-p-tosyl-L-arginine methyl ester hydrochloride (serine protease substrates) and optimal activity at pH 8. 0. Proteases purified from the aqueous and extracellular extracts were effectively inhibited by benzamidine (trypsin inhibitor) and those from the detergent extract were inhibited by N-tosyl-L-phenyl-alanine chloromethyl ketone (chymotrypsin inhibitor) indicating that all these enzymes are serine proteases. These findings indicate that L. braziliensis serine proteases display some biochemical similarities with L. amazonensis serine proteases, demonstrating a conservation of this enzymatic class in the Leishmania genus. This is the first study to report the purification of a serine protease from Leishmania braziliensis.  相似文献   

14.
To examine whether serine proteases of rat liver chromatin are also involved in the degradation of newly synthesized and unbound ribosomal proteins and histones, like the nuclear thiol protease which we reported previously (Tsurugi, K. & Ogata, K. (1979) Eur. J. Biochem. 101, 205-213), in vivo experiments were carried out with serine protease inhibitor, PMSF. The following results were obtained. When normal rats received an intraperitoneal injection of PMSF (10 mg per 100 g body weight), nuclear serine proteases were inhibited almost completely for at least 90 min. PMSF did not affect the synthesis of proteins and RNAs of ribosomes and other subcellular fractions. The effects of PMSF treatment in vivo on the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver pretreated with a low dose of actinomycin D, which preferentially inhibited rRNA synthesis, were examined by using the double-isotope method. It was found that PMSF treatment did not affect their degradation. On the other hand, administration of E-64, a thiol protease inhibitor, to partially hepatectomized rats inhibited the degradation of those proteins markedly. From these results, it is concluded that the nuclear thiol protease, but not serine proteases, is preferentially involved in the degradation of newly synthesized ribosomal proteins and histones which are not associated with rRNA and DNA, respectively.  相似文献   

15.
Secretory leucoprotease inhibitor (SLPI) is a non-glycosylated protein produced by epithelial cells, macrophages, and neutrophils and was initially identified as a serine protease inhibitor of the neutrophil proteases elastase and cathepsin G. In addition to its antiprotease activity, SLPI has been shown to exhibit anti-inflammatory properties including down-regulation of tumor necrosis factor-alpha expression by lipopolysaccharide (LPS) in monocytes, inhibition of NF-kappaB activation by IgG immune complexes in a rat model of acute lung injury, and prevention of human immunodeficiency virus infectivity in monocytic cells via as yet unidentified mechanisms. In this report we have shown that SLPI prevents LPS-induced NF-kappaB activation by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. We have also demonstrated that SLPI prevents LPS-induced interleukin-1 receptor-associated kinase and IkappaBbeta degradation. In addition, we have demonstrated that oxidized SLPI, a variant of SLPI that has diminished antiprotease activity, cannot prevent LPS-induced NF-kappaB activation or Inhibitor kappaB alpha/beta degradation indicating that the anti-inflammatory effect of SLPI on the LPS-signaling pathway is dependent on its antiprotease activity. These results suggest that SLPI may be inhibiting proteasomal degradation of NF-kappaB regulatory proteins, an effect that is dependent on the antiprotease activity of SLPI.  相似文献   

16.
Oligopeptidase B (OpdB) of Escherichia coli, previously called protease II, has a trypsin-like specificity, cleaving peptides at lysine and arginine residues and belongs to the prolyl oligopeptidase family of new serine peptidases. In this study, we report the fusion expression of E. coli oligopeptidase B with an N-terminal histidine tag using pET28a as the expression vector. Although most of the recombinant OpdB was produced as inclusion bodies, the solubility of the recombinant protease increased significantly when the expression temperature shifted from 37 to 30 degrees C. Recombinant OpdB (approximately 10 mg) could be purified from the soluble fraction of the crude extract of 1L log-phase E. coli culture containing 1.5 g wet bacterial cells. The purified OpdB has a molecular weight of approximately 80 kDa and a specific activity of 4.8 x 10(4) U/mg. OpdB could also be purified from the inclusion bodies with a lower yield. The recombinant enzyme was very stable under 40 degrees C. By comparison of the substrate specificity of the purified OpdB with that of OpdA, another trypsin-like protease in E. coli, we found that Boc-Glu-Lys-Lys-MCA is a specific substrate for E. coli OpdB. We also found that compared to OpdA, OpdB is much more sensitive to GMCHA-OPh(t)Bu, a synthetic trypsin inhibitor that can retard the growth of E. coli.  相似文献   

17.
We report here the continued characterization of a 41-kDa protease expressed in the early stage of the sea urchin embryo. This protease was previously shown to possess both a gelatin-cleavage activity and an echinoderm-specific collagen-cleavage activity. In the experiments reported here, we have explored the biochemical nature of this proteolytic activity. Pepstatin A (an acidic protease inhibitor), 1,10-phenanthroline (a metalloprotease inhibitor), and E-64 (a thiol protease inhibitor) were without effect on the gelatin-cleavage activity of the 41-kDa species. Using a gelatin substrate gel zymographic assay, the serine protease inhibitors phenylmethylsulfonyl fluoride and benzamide appeared to partially inhibit gelatin-cleavage activity. This result was confirmed in a quantitative gelatin-cleavage assay using the water soluble, serine protease inhibitor [4-(2-aminoethyl)benzenesulfonylfluoride]. The biochemical character of this protease was further explored by examining the effects of calcium and magnesium, the major divalent cations present in sea water, on the gelatin-cleavage activity. Calcium and magnesium competed for binding to the 41-kDa collagenase/gelatinase, and prebound calcium was displaced by magnesium. Cleavage activity was inhibited by magnesium, and calcium protected the protease against this inhibition. These results identify calcium and magnesium as antagonistic agents that may regulate the proteolytic activity of the 41-kDa species.  相似文献   

18.
Stearoyl-CoA desaturase (SCD) is an integral membrane protein of the endoplasmic reticulum that is rapidly and selectively degraded when isolated liver microsomes are incubated at 37 degrees C. We previously reported the purification of a 90-kDa microsomal protein with SCD protease activity and characterized the inhibitor sensitivity of the protease. Here we show that the 90-kDa protein is a microsomal form of plasminogen (Pg) and that the purified SCD protease contains a spectrum of plasmin-like derivatives. The 90-kDa protein was identified as Pg by mass spectrometry of its tryptic peptides. The purified SCD protease reacted with Pg antibody, and immunoblotting demonstrated enrichment of Pg by the purification procedure established for the SCD protease. Analysis of microsomes by zymography demonstrated a single band of proteolytic activity at 70-kDa corresponding to the mobility of Pg in nonreduced polyacrylamide gels. When microsomes were incubated at 37 degrees C prior to zymography, an intense band of proteolytic activity developed at 30-kDa. The purified SCD protease displayed a spectrum of proteolytic bands ranging from 70 to 30 kDa. Degradation of SCD by the purified protease and by microsomes was inhibited by bdellin, a plasmin inhibitor from the medicinal leech Hirudo medicinalis. To explore the role of Pg in the degradation of SCD in vivo, we examined SCD expression and degradation in microsomes isolated from Pg-deficient (Pg-/-) mice. Compared with microsomes from wild-type littermate control mice, liver microsomes from Pg-/- mice had significantly higher levels of SCD. Degradation of SCD in microsomes from Pg-/- mice was markedly diminished, whereas liver microsomes from control mice showed rapid SCD degradation similar to that observed in rat liver microsomes. These findings indicate that SCD is degraded by a protease related to Pg and suggest that plasmin moonlights as an intracellular protease.  相似文献   

19.
20.
1. Hepatoma 8999 showed extremely high activity of serine protease, but similar activities of other lysosomal proteases to those of normal rat liver. 2. Serine protease from rat liver formed a single immunoprecipitation band against antiserum to purified protease from hepatoma 8999. 3. The serine proteases in rat liver and hepatoma 8999 were restricted to the inner membranes of the mitochondrial fraction. 4. Polyacrylamide gel electrophoresis with sodium dodecylsulfate showed that hepatoma 8999 mitochondria contained less of the slowest moving protein component than rat liver mitochondrial protein. This component was found to be the best substrate for mitochondrial serine protease in both liver and hepatoma 8999. 5. The role of serine protease in mitochondrial protein degradation is discussed on the basis of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号