首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In order to determine if differentiated Xenopus retina is capable of undergoing regeneration and duplicative pattern formation, we devised a new surgical technique for removal of the temporal two-thirds of the retina. In a series of progressively older larval eyes starting with late tailbud stage embryos (stage 38) and extending to limb-bud stage tadpoles (stage 48), nasal one-third-sized eye fragments successfully regenerated to form nearly normal sized eyes over 75% of the time. Histological preparations showed that early wound healing involved the formation of a neuroepithelium at the ventro-temporal region of the fragment. The pigmented retinal epithelium and associated retinal tissue appeared to be involved in this process. Animals from each stage were reared through metamorphosis and electrophysiologic techniques were employed to determine visuo-tectal projections. Seventy percent of stage 38 animals showed evidence of pattern-duplicated projections. Ninety percent of their responding tectal points showed duplicate innervation from two retinal regions. Older animals (stages 44 to 48) showed less duplication. Only 52% of their responding tectal points duplicated (P less than 0.001). Thus, fully differentiated Xenopus retina can undergo regeneration and duplicative pattern formation similar to that shown by embryonic retinal tissue.  相似文献   

2.
Three quarters of the eye anlage in Xenopus embryos of stage 33/34 were eliminated in three different sets of experiments. The remaining quadrant originated from the nasoventral part of the retina, from its ventral portion, or from the temporo-ventral area of the retina. All the fragments developed into small eyes of normal shape. The retinotectal connections did not deviate from those found in the control groups, even though mirror-image duplication was fairly frequent. For all fragments the tectal projection fields were rather limited. There was some indication of fragments retaining their original specificity. Irrespective, however, of their different origins, the optic projections always occupied the rostrolateral area of the tectum.  相似文献   

3.
Many parts of the visual system contain topographic maps of the visual field. In such structures, the binocular portion of the visual field is generally represented by overlapping, matching projections relayed from the two eyes. One of the developmental factors which helps to bring the maps from the two eyes into register is visual input. The role of visual input is especially dramatic in the frog, Xenopus laevis. In tadpoles of this species, the eyes initially face laterally and have essentially no binocular overlap. At metamorphosis, the eyes begin to move rostrodorsally; eventually, their visual fields have a 170 degree region of binocular overlap. Despite this major change in binocular overlap, the maps from the ipsilateral and contralateral eyes to the optic tectum normally remain in register throughout development. This coordination of the two projections is disrupted by visual deprivation. In dark-reared Xenopus, the contralateral projection is nearly normal but the ipsilateral map is highly disorganized. The impact of visual input on the ipsilateral map also is shown by the effect of early rotation of one eye. Examination of the tectal lobe contralateral to the rotated eye reveals that both the contralateral and the ipsilateral maps to that tectum are rotated, even though the ipsilateral map originates from the normal eye. Thus, the ipsilateral map has changed orientation to remain in register with the contralateral map. Similarly, the two maps on the other tectal lobe are in register; in this case, both projections are normally oriented even though the ipsilateral map is from the rotated eye. The discovery that the ipsilateral eye's map reaches the tectum indirectly, via a relay in the nucleus isthmi, has made it possible to study the anatomical changes underlying visually dependent plasticity. Retrograde and anterograde tracing with horseradish peroxidase have shown that eye rotation causes isthmotectal axons to follow abnormal trajectories. An axon's route first goes toward the tectal site where it normally would arborize but then changes direction to reach a new tectal site. Such rearrangements bring the isthmotectal axons into proximity with retinotectal axons which have the same receptive fields. Anterograde horseradish peroxidase filling has also been used to study the trajectories and arborizations of developing isthmotectal axons. The results show that the axons enter the tectum before the onset of eye migration but do not begin to branch profusely until eye movement begins to create a zone of binocular space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
To study the adaptative capabilities of the retinotectal system in birds, the primordium of one optic tectum from 12-somite embryos of Japanese quail was transplanted either homotopically, to replace the ablated same primordium, or heterotopically, to replace the ablated dorsal diencephalon in White Leghorn chick embryos of the same stage. The quail nucleolar marker was used to recognize the transplants. The cytoarchitecture of the tecta and the retinal projections from the eye contralateral to the graft were studied on the 17th or 18th day of incubation in the chimeric embryos by autoradiographic or horseradish peroxidase tracing methods. Morphometric analysis was applied to evaluate the percentage of the tectal surface receiving optic projections. It was observed that: (i) quail mesencephalic alar plate can develop a fully laminated optic tectum even when transplanted heterotopically; (ii) retinal ganglion cells from the chick not only recognize the tectal neurons of the quail as their specific targets in homotopic grafts, but the optic fibers deviate to innervate the heterotopically grafted tectum; (iii) in the presence of a graft, the chick retina is unable to innervate a tectal surface of similar or larger size than that of the control tectum; (iv) tectal regions devoid of optic projections, whether formed by donor or by host cells, always present an atrophic lamination; (v) the diencephalic supernumerary optic tectum competes with and prevails over the host tectum as a target for optic fiber terminals.  相似文献   

5.
Chick embryo retina and optic tectum cells can be dissociated into single cells and then reaggregated in suspension cultures to give highly organized and differentiated aggregates. These aggregates show a degree of cholinergic differentiation that is characteristic of each cell type; the low activity of choline acetyltransferase in the optic tectum aggregates probably reflects the condition of natural deafferentation inherent in the culture situation. It is possible, in this respect, to study the retina-tectum interaction in vitro by preparing coaggregates including both types of cells. When coaggregates are prepared from tectum and retina cells of the same developmental age, the activity of choline acetyltransferase measured in the coaggregates is consistently higher than would be expected from the simple addition of the activities of the component cells, pointing to some kind of metabolic synergism between retinal and tectal cells. As for acetylcholinesterase, this synergism occurs only under special circumstances, and it is generally less marked. No synergism was observed when retina and tectum cells of different developmental age were coaggregated, suggesting the existence of a temporal control of neuronal interaction specificity. On the other hand, the synergism is only observed between neuronal systems that are known to establish synaptic connections during normal in vivo development: No interaction could be detected when either retinal or tectal cells were combined with telencephalon, cerebellum, or liver cells. Experimental evidence is presented suggesting that the retina-tectum interaction depends on intimate cell-cell contact, and it is not mediated by freely diffusible molecules. Neurotransmission-related metabolic studies in coaggregates seem to offer a promising tool to study recognition-interaction phenomena in groups of neurons establishing synaptic links during development.  相似文献   

6.
After removal of the nasal or the temporal two-thirds of the embryonic (stage 32) eye, the remaining one-third sized fragment undergoes wound healing and then, in most cases, regenerates to form a new eye. Using gross anatomy and histology techniques, we categorized eye fragments into three healing mode categories over the first 24 hr after surgery (stage 37-38). Representative animals were reared through metamorphosis and their visuotectal projections were assayed using standard electrophysiology techniques. In the "rounded-up" healing mode, the cut edges of the fragment pinch to close the wound; retinal cell type layers (pigmented retinal epithelium (pre), photoreceptors, interneurons, ganglion cells) and a lens are present by 24 hr postsurgery. No extraneous or disorganized cells are present either internal or external to the fragments. These fragments regenerated to form normal projections 83% of the time and pattern duplicated projections only 17% of the time. In the "intermediate" healing mode, wound closure is not complete by 24 hr post surgery and groups of disorganized cells are present in the fragment and amassed between the healing cut edges. These fragments formed pattern duplicated projections 72% of the time. In the tongue healing mode, an ectopic mass of cells, contiguous with the main body of the fragment, forms a supernumerary retina in the region of the ablation. At 24 hr post surgery, the cells of the main body fragment form retinal layers; the cells of the tongue, excluding the presence of differentiated pre cells, remain undifferentiated, resembling ciliary margin. The cut edges of the main body fragment eventually fuse with the tongue to form a single eyeball. Tongue fragments formed pattern duplicated projections 100% of the time. In addition, pattern duplicated points derived from nasal fragments appeared most often in the posterior region of the tectum, the normal site of innervation of the nasal retina. This differed significantly from temporal fragment derived duplicated points which appeared more often in the front of the tectum, the normal site of innervation by temporal retina. Thus, the specificity of pattern duplicated innervation is related to the positional values remaining in the fragment after partial retinal ablation. The data indicate that cell movements during healing, whether overt as in the tongue healing mode, or remaining internal to the fragment as in the intermediate healing mode, are intimately correlated with pattern forming mechanisms which underlie pathological visuotectal duplication.  相似文献   

7.
The left eye was removed from Stage 56 Xenopus tadpoles. Two to 9 months after metamorphosis, electrophysiologic analysis showed that the surviving (right) eye mediated a normal visual field projection to the left (contralateral) optic tectum. In addition, a peripheral region of the same retina innervated the entire right (ipsilateral) tectum. Primary evidence that indicates this anomalous ipsilateral projection was due to direct retina-to-tectum innervation comes from singleunit analysis, latency measurements, and tectal lesion studies. Thus, the peripheral retina simultaneously connected in much different patterns to the two optic tecta, solely on the basis of the presence (in the left tectum) or absence (in the right tectum) of central retinal fibers. This documents a role for fiber-fiber interaction (such as repulsion or competition) acting in combination with fiber-tectum interactions in the formation of the retinotectal map.  相似文献   

8.
An assay is described that can measure the rates of adhesion of isotopically labeled cell bodies from either the dorsal or ventral regions of the chick embryo retina to dorsal and ventral tectal halves. Immediately after dissociation of the retina, both ventral and dorsal retinal cells adhere preferentially to ventral tectal halves. With increasing time after dissociation, however, the preference of the ventral retinal cells shifts to dorsal tectal halves. The dorsal retinal cells continue to show a specificity for ventral tectal halves regardless of the length of time after their dissociation.When the developmental age of the tectal halves is varied from 8–14 days, there is no change in the specificities shown by retinal cells toward these tecta.When retinal age is varied, ventral retinal cells do not adhere preferentially to dorsal tecta until day 6 and older. Dorsal retinas show their specificity toward ventral tecta as early as day three.Control experiments include the use of nonretinal tissues, noninnervated tectal halves and pigmented retinal cells.  相似文献   

9.
10.
We examined relationships between healing observed during embryonic Xenopus retinal and optic nerve regeneration and resultant visuotectal pattern formation. Dorsal (D) and nasoventral (NV) 1/3 sized eye fragments were surgically created in stage 32 Xenopus laevis embryos. Gross anatomical healing modes of these fragments were examined 2 days post-surgery (stage 43). Healing was categorized according to the degree of cell movements observed. Animals were reared through metamorphosis and electrophysiologic mapping techniques were employed on those animals whose eyes regenerated. All D 1/3 fragments showed normal (non-duplicated) projections to the tectum; most (80%) of the healing observed showed little cell movements (the remaining 20% showed substantial cell movements, yet failed to show duplicated projections). Most NV 1/3 fragments (73%) formed two mirror image projections to the contralateral midbrain optic tectum (pattern duplication). Most (88%) of the healing observed among these animals showed massive cell movements in the ventral retinal region (the remaining 12% showed moderate cell movements). The remaining NV 1/3 fragments (27%) showed moderate cell displacement and failed to show duplicated projections). These data are compatible with a cell-movement:intercalary cell division hypothesis in which duplication is dependent upon specific positional confrontation and subsequent cell division. In additional studies, in adult animals, the optic nerves of eyes with duplicated projections were crushed and allowed to regenerate for 1 year. Duplicated projections were restored, indicating that developmental and maturational factors are probably not responsible for duplicative pattern formation; rather, information intrinsic to the eye, possibly created during healing interactions and/or fiber ingrowth to the tectum, underlies duplicate innervation of the tectum.  相似文献   

11.
The locus specificities which enable retinal ganglion cells to assemble a topographic retinotectal map are patterned about a pair of (anteroposterior and dorsoventral) retinal axes set down in the early eye bud. We have transplanted a Xenopus laevis eye bud, at stage 2324 when the retinal field is still responsive to the axial signals from the surrounding tissues, into the enucleated eye socket of a comparable stage Ambystoma maculatum embryo. Three days later, when the Xenopus eye had reached early larval stages and was no longer responsive to extraocular signals, the eye was retransplanted into the socket of the Xenopus final carrier embryo. The pattern of retinotectal connections between the eye and the carrier's optic tectum was examined by electrophysiological analysis of the visuotectal projections. The results indicated that many of the retinae had patterned locus specificities about axes derived from the salamander intermediate host. We infer that axial signaling involves fundamental cellular processes which have been highly conserved during evolution.  相似文献   

12.
We have carried out a comparative study of the developmental profiles of the enzyme acetylcholinesterase, and of its collagen-tailed and globular structural forms, solubilized in the presence of 1 M NaCl, 1% (w/v) sodium cholate and 2 mM EDTA, in the chick retina and optic lobes. The overall acetylcholinesterase activities, both per mg protein and per embryo or chick, are substantially higher in tectum than in retina, from embryonic day 16. The A12 collagen-tailed form of the enzyme is present in similar amounts in the embryonic retina and optic tectum; however, while the A12 activity increases significantly in retina after birth, both by percentage and in absolute terms, the tectal tailed enzyme follows a declining developmental profile, reaching a minimum after 6 months of life. On the other hand, the globular G4 species shows developmental profiles, both in retina and tectum, rather similar to those obtained for the overall enzyme activity, while the G2 and G1 forms are present in comparable concentrations in both tissues. Besides, G4 is the predominant globular form in the chick optic lobe after hatching, G2 and G1 being enriched in the embryonic tectum. In the case of retina, however, all the globular forms contribute more evenly to the total acetylcholinesterase activity, along the developmental period considered.The potential significance of some of the postnatal developmental profiles is discussed in terms of the progressive adjustment of retina and tectum to the requirements of visual function.  相似文献   

13.
In pigeons, asymmetric photic stimulation around hatch induces functional visual asymmetries that are accompanied by left-right differences in tectal cell sizes. Different aspects of light-dependent neuronal differentiation are known to be mediated by the brain-derived neurotrophic factor (BDNF). Therefore, we investigated by means of single or triple BDNF- or saline-injections into the right eye of dark-incubated pigeon hatchlings if ocular BDNF enrichment mimics the effects of biased visual input. As adults, the birds were tested in a grit-grain discrimination task to estimate the degree and direction of visual lateralization followed by a morphometric analysis of retinal and tectal cells. The grit-grain discrimination task demonstrated that triple BDNF-injections enhanced visuoperceptual and visuomotor functioning of the left eye system. Morphometric analysis showed bilateral cell-type dependent effects within the optic tectum. While single-BDNF injections increased cell body sizes of calbindin-positive efferent neurons, triple-injections decreased cell sizes of parvalbumin-positive cells. Moreover, single BDNF-injections increased retinal cell sizes within the contralateral eye. Analysis of BDNF-induced intracellular signaling demonstrated enhanced downstream Ras activation for at least 24 h within both tectal halves whereas activity changes within the contralateral retina could not be detected. This points to primarily tectal effects of ocular BDNF. In sum, exogenous BDNF modulates the differentiation of retinotectal circuitries and dose-dependently shifts lateralized visuomotor processing towards the noninjected side. Since these effects are opposite to embryonic light stimulation, it is unlikely that the impact of light onto asymmetry formation is mediated by retinal BDNF.  相似文献   

14.
In lower vertebrates such as frogs and fish, long ocular dominance stripes with anterior-posterior (A-P) orientation can be produced by causing both eyes to innervate one optic tectum during the course of development. Similar experiments on adult animals usually produce patches rather than stripes. During development, new retinal fibers from the nasal retina segregate into appropriate stripes at the growing edge of the posterior (P) tectum while new temporal fibers segregate at the non-growing anterior (A) tectal edge. Fiber segregation into long A-P oriented stripes might depend upon a template produced by new nasal fibers initiating stripe orientation in the vicinity of new tectal cells; new nasal fibers would orient to the nascent (posterior) edge of the template while temporal fibers would orient to the anterior (non-growing) end of the template. To test the dependence of stripe formation on the matching of nascent retinal cells with nascent tectal cells, we compared stripe orientation in animals with isogenic double nasal innervation and isogenic double temporal innervation of the tectum. In double nasal innervation, the oldest retinal cells innervate the anterior tectum; new fibers from the entire retinal periphery always innervate the newest tectal cells at the posterior tectum. Stripes are oriented A-P, consistent with a maturation front model. In contrast, the oldest retinal cells innervate the newest (posterior) tectal cells in double temporal innervation of the tectum; the growing retinal periphery innervates the non-growing anterior tectum. Stripes are also oriented A-P, indicating that the production of long stripes does not depend upon maturation front matching of nascent retinal fibers and nascent tectal cells.  相似文献   

15.
Retinotectal projection is precisely organized in a retinotopic manner. In normal projection, temporal retinal axons project to the rostral part of the tectum, and nasal axons to the caudal part of the tectum. The two-dimensional relationship between the retina and the tectum offers a useful experimental system for analysis of neuronal target recognition. We carried out rotation of the tectal primordium in birds at an early stage of development, around the 10-somite stage, to achieve a better understanding of the characteristics of target recognition, especially the rostrocaudal specificity of the tectum. Our results showed that temporal retinal axons projected to the rostral part of the rotated tectum, which was originally caudal, and that nasal axons projected to the caudal part of the rotated tectum, which was originally rostral. Therefore, the tectum that had been rotated at the 10-somite stage received normal topographic projection from the retinal ganglion cells. Rostrocaudal specificity of the tectum for target recognition is not determined by the 10-somite stage and is acquired through interactions between the tectal primordium and its surrounding structures.  相似文献   

16.
Biochemical investigations of retinotectal adhesive specificity   总被引:4,自引:1,他引:3       下载免费PDF全文
The preferential adhesion of chick neural retina cells to surfaces of intact optic tecta has been investigated biochemically. The study uses a collection assay in which single cells from either dorsal or ventral halves of neural retain adhere preferentially to ventral or dorsal halves of optic tecta respectively. The data presented support the following conclusions: (a) The adhesion of ventral retina to dorsal tecta seems to depend on proteins located on ventral retina and on terminal β-N-acetylgalactosamine residues on dorsal tecta. (b) The adhesion of dorsal retina to ventral tecta seems to depend on proteins located on ventral tecta and on terminal β- N-acetylgalactosamine residues on dorsal retina. (c) A double gradient model for retinotectal adhesion along the dorsoventral axis is consistent with the data presented. The model utilizes only two complementary molecules. The molecule suggested to be concentrated dorsally in both retina and tectum seems to require terminal β-N-acetylgalactosamine residues for adhesion. Its activity is not affected by protease. A molecule fitting these qualifications, the ganglioside GM(2), could not be detected in a gradient, but lecithin vesicles containing GM(2) adhered preferentially to ventral tectal surfaces. The second molecule, concentrated ventrally in both retina and tectum, is a protein and seems capable of binding terminal β-N- acetylgalactosamine residues. One enzyme, UDP-galactose:GM(2) galactosyltransferase, has been found to be more concentrated in ventral retina than dorsal, but only by 30 percent.  相似文献   

17.
The retinotectal pathway of Xenopus laevis is a well-established experimental model for studying activity-dependent processes during visual system development. Such processes can be guided by stimulus-evoked activity patterns, which depend on the refractive characteristics of the eye. Previous work has shown that many animals are hyperopic at early developmental stages due to immature refractive properties. Whether this is also the case for Xenopus laevis is unknown. Here, we measure the focal length of the lens and the size of the eye of embryos at different stages and find that Xenopus laevis exhibits a similar shift from hyperopia to emmetropia. At early stages, immediately after innervation of the tectum by the optic nerve, Xenopus embryos are hyperopic. Soon afterwards the focal length of the lens decreases and the eye converges to a state of emmetropia. Despite being hyperopic we find that some visuospatial information is available to the young circuit. Calculations based on the optical properties of the eye show that even when the animals are hyperopic the blurred retinal image provides a crude spatial resolution. Furthermore, using whole-cell recordings in the optic tectum combined with visual stimulation through the intact eye, we show that tectal neurons in hyperopic embryos have spatially restricted glutamatergic receptive fields. Our data demonstrate that Xenopus laevis eyes undergo a process of developmental emmetropization, and suggest that despite an initial stage of suboptimal image formation there is potentially enough information to guide activity-dependent refinements of the retinotectal pathway from the onset of vision.  相似文献   

18.
Summary Tongue-projecting plethodontid salamanders have massive direct ipsilateral retinal afferents to the tectum opticum as well as a large and well developed nucleus isthmi. Retrograde staining revealed two subnuclei: A ventral one projecting to the contralateral tectal hemisphere and a dorsal one projecting back to the ipsilateral side. The isthmic nuclei show a retinotopic organization, which is in register with that of the tectum. Electrophysiological recordings from nucleus-isthmi neurons revealed response properties that are very similar to those found in tectal neurons. Thus, there is no substantial processing of tectal neural activity in the nucleus isthmi. Measurements of peak latencies after electrical and light stimulation suggest the continuous coexistence of 4 representations of the visual field in the tectum mediated by (1) the contralateral and (2) the ipsilateral direct retinal afferents, (3) the uncrossed and (4) the crossed isthmo-tectal projection. (1) and (2) originate at the same moment in the retina and arrive simultaneously in the tectum. It is assumed that in plethodontid salamanders with massive ipsilateral retino-tectal projections depth perception based on disparity cues is achieved by comparison of these images.Representations mediated by (3) and (4) arriving in the tectum at the same time as (1) and (2) originate 10–30 ms earlier in the retina. It is hypothesized that these time differences between (1)/(2) and (3)/(4) are used to calculate three-dimensional trajectories of fast-moving prey objects.Abbreviations EL edge length - FDA fluoresceine dextranamine - RDA tetramethylrhodamine dextranamine - RF receptive field  相似文献   

19.
Fish and amphibia are capable of lifelong growth and regeneration. The two core components of their visual system, the retina and tectum both maintain small populations of stem cells that contribute new neurons and glia to these tissues as they grow. As the animals age, the initial retinal projections onto the tectum are continuously remodeled to maintain retinotopy. These properties raise several biological challenges related to the control of proliferation and differentiation of retinal and tectal stem cells. For instance, how do stem and progenitor cells integrate intrinsic and extrinsic cues to produce the appropriate type and number of cells needed by the growing tissue. Does retinal growth or neuronal activity influence tectal growth? What are the cellular and molecular mechanisms that enable retinal axons to shift their tectal connections as these two tissues grow in incongruent patterns? While we cannot yet provide answers to these questions, this review attempts to supply background and context, laying the ground work for new investigations.  相似文献   

20.
1. The tectum of Xenopus receives visuotopic input from both eyes. The contralateral eye's projection reaches the tectum directly, via the optic nerve. The ipsilateral eye's projection reaches the tectum indirectly, via the nucleus isthmi and isthmo-tectal projection. 2. Because of the multi-synaptic nature of the ipsilateral pathway, there is an inherent delay between the time that information from the contralateral eye reaches the tectum and the time that information from the ipsilateral eye arrives at the tectum. The length of the intertectal delay is a function of the latencies of the contralateral and ipsilateral pathways. 3. The length of this intertectal delay has functional, as well as developmental, implications with regard to the role of N-methyl-D-aspartate receptors in tectal cell activity and development of orderly synaptic connections. 4. We have found that the latencies of the contralateral and ipsilateral pathways exhibit a seasonal variation, increasing during the winter months. The increases of both latencies during the winter were of similar magnitude, indicating that there were no significant changes in intertectal delay. The seasonal alteration in contralateral latency was not affected by dark-rearing and was affected to only a minor extent by a week-long alteration of ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号