首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development   总被引:5,自引:0,他引:5  
Plant cells employ the actin cytoskeleton to stably position organelles, as tracks for long distance transport, and to reorganize the cytoplasm in response to developmental and environmental cues. While diverse classes of actin binding proteins have been implicated in growth control, the mechanisms of cytoskeletal reorganization and the cellular functions of specific actin filament arrays are unclear. Arabidopsis trichome morphogenesis includes distinct requirements for the microtubule and actin filament cytoskeletons. It also is a genetically tractable process that is providing new knowledge about cytoskeleton function in plants. The "distorted group" of mutants defines a class of at least eight genes that are required during the actin-dependent phase of trichome growth. Using map-based cloning and a candidate gene approach, we identified mutations in ARP3 (ATARP3) and ARP2 (ATARP2) genes as the cause of the distorted1 (dis1) and wurm (wrm) phenotypes, respectively. ARP2 and ARP3 are components of the evolutionarily conserved ARP2/3 complex that nucleates actin filament polymerization [3]. Mutations in DIS1 and WRM caused severe trichome growth defects but had relatively mild effects on shoot development. DIS1 rescued the phenotype of Deltaarp3 when overexpressed in S. cerevisiae. Developing dis1 trichomes had defects in cytoplasmic actin bundle organization and reduced relative amounts of cytoplasmic actin filaments in developing branches.  相似文献   

2.
Szymanski DB  Marks MD  Wick SM 《The Plant cell》1999,11(12):2331-2347
Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.  相似文献   

3.
We are using trichome (hair) morphogenesis as a model to study how plant cell shape is controlled. During a screen for new mutations that affect trichome branch initiation in Arabidopsis, we identified seven new mutants that show a reduction in trichome branch number from three branches to two. These mutations were named furca, after the Latin word for two-pronged fork. These seven recessive mutations were placed into four complementation groups that define four new genes: FURCA1, FURCA2, FURCA3 and FURCA4. The trichome branch number phenotype indicates that the FURCA genes encode positive regulators of trichome branch initiation. Analysis of double mutants suggests that primary and secondary branch initiation events are not genetically distinct, but rely on the levels of partially redundant groups of regulators of trichome branch initiation. Based on the analysis of both epistatic and additive genetic interactions between the FURCA genes and other genes that control trichome branch number, we propose a model that explains how these genes interact to control trichome branch initiation. This model successfully predicts the phenotypes of all the single and double mutants examined and suggests points of control of the trichome branch pathway.  相似文献   

4.
One of the most challenging problems in biology resides in unraveling the molecular mechanisms, hardwired in the genome, that define and regulate the multiscale tridimensional organization of organs, tissues and individual cells. While works in cultured cells have revealed the importance of cytoskeletal networks for cell architecture, in vivo models are now required to explore how such a variety in cell shape is produced during development, in interaction with neighboring cells and tissues. The genetic analysis of epidermis development in Drosophila has provided an unbiased way to identify mechanisms remodeling the shape of epidermal cells, to form apical trichomes during terminal differentiation. Since hearing in vertebrates relies on apical cell extensions in sensory cells of the cochlea, called stereocilia, the mapping of human genes causing hereditary deafness has independently identified several factors required for this peculiar tridimensional organization. In this review, we summarized recent results obtained toward the identification of genes involved in these localized changes in cell shape and discuss their evolution throughout developmental processes and species.  相似文献   

5.
Epithelial tubes are found in many vital organs and require uniform and correct tube diameters for optimal function. Tube size depends on apical membrane growth and subapical cytoskeletal reorganization, but the cues that coordinate these events to ensure functional tube shape remain elusive. We find that epithelial tubes in the Drosophila trachea require luminal chitin polysaccharides to attain the correct diameter. Tracheal chitin forms a broad transient filament within the tubes during the restricted period of expansion. Loss of chitin causes tubular constrictions and cysts associated with irregular subapical cytoskeletal organization, without affecting epithelial integrity and polarity. Analysis of previously identified tube expansion mutants in genes encoding septate junction proteins further suggests that septate junction components may function in tubulogenesis through their role in luminal matrix assembly. We propose that the transient luminal protein/polysaccharide matrix is sensed by the epithelial cells and coordinates cytoskeletal organization to ensure uniform lumen diameter.  相似文献   

6.
ACTIN-RELATED PROTEINS 2 and 3 form the major subunits of the ARP2/3 complex, which is known as an important regulator of actin organization in diverse organisms. Here, we report that two genes, WURM and DISTORTED1, which are important for cell shape control in Arabidopsis, encode the plant ARP2 and ARP3 orthologs, respectively. Mutations in these genes result in misdirected expansion of various cell types: trichome expansion is randomized, pavement cells fail to produce lobes, hypocotyl cells curl out of the normal epidermal plane, and root hairs are sinuous. At the subcellular level, cell shape changes are linked to severe filamentous actin aggregation and compromised vacuole fusion. Because all seven subunits of the ARP2/3 complex are present in plants, our data indicate that this complex may play a pivotal role during plant cell morphogenesis.  相似文献   

7.
Interaction of cell integrins with the ECM (extracellular matrix) proteins is commonly assumed to be associated with cell dissemination and tumour metastases. Since these processes depend on the mechanism of cell-protein interaction, we have attempted to show the contribution of α5β1 and αvβ3 integrins of the prostate cancer PC-3 cells in in vitro interaction with FN (fibronectin) adsorbed on defined polystyrene surfaces. Cell adhesion, spreading and cytoskeleton organization were studied using antibodies against integrins or a GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) peptide. The results show that blocking the α5β1 integrin causes: (i) a decrease in the number of the adherent cells in the early phase of adhesion and (ii) a decrease in the dynamics of cell spreading and cell shape changes, and weaker reorganization of cytoskeletal proteins than in the control cells. Conversely, the blocking of the αvβ3 integrin: (i) causes no observable effect on the number of the adhered cells; however, (ii) causes an increase in the dynamics of cell spreading and cell shape changes, and stronger reorganization of cytoskeletal proteins than in the control cells. Interestingly, the blocking of integrins with a GRGDSP peptide strongly decreases the number of the adhered cells, and a complete inhibition of cell spreading. Our results strongly suggest that the α5β1 integrin plays the main role in the adhesion and spreading of PC-3 cells interacting with FN, whereas the αvβ3 integrin seems to regulate other receptors in the spreading process. Moreover, integrin-FN interaction through the RGD sequence evidently curbed the cell adhesion and spreading.  相似文献   

8.
Hotary KB  Allen ED  Brooks PC  Datta NS  Long MW  Weiss SJ 《Cell》2003,114(1):33-45
Cancer cells are able to proliferate at accelerated rates within the confines of a three-dimensional (3D) extracellular matrix (ECM) that is rich in type I collagen. The mechanisms used by tumor cells to circumvent endogenous antigrowth signals have yet to be clearly defined. We find that the matrix metalloproteinase, MT1-MMP, confers tumor cells with a distinct 3D growth advantage in vitro and in vivo. The replicative advantage conferred by MT1-MMP requires pericellular proteolysis of the ECM, as proliferation is fully suppressed when tumor cells are suspended in 3D gels of protease-resistant collagen. In the absence of proteolysis, tumor cells embedded in physiologically relevant ECM matrices are trapped in a compact, spherical configuration and unable to undergo changes in cell shape or cytoskeletal reorganization required for 3D growth. These observations identify MT1-MMP as a tumor-derived growth factor that regulates proliferation by controlling cell geometry within the confines of the 3D ECM.  相似文献   

9.
10.
During morphogenesis tissues significantly remodel by coordinated cell migrations and cell rearrangements. Central to this problem are cell shape changes that are driven by distinct cytoskeletal reorganization responsible for force generation. Calcium is a versatile and universal messenger that is implicated in the regulation of embryonic development. Although calcium transients accrue clearly and more intensely in tissues undergoing rearrangement/migration, it is far from clear what the role of these calcium signals is. Here we summarize the evidence implicating calcium participation in tissue movements, cell shape changes and the reorganization of contractile cytoskeletal elements in developing embryos. We also discuss a novel hypothesis that short-lived calcium spikes are required in cells and tissues undergoing migration and rearrangements as a fine tuning response mechanism to prevent local, abnormally high fluctuations in cytoskeletal activities.  相似文献   

11.
植物细胞命运决定机制的解析一直以来都是植物发育生物学研究的核心.模式植物拟南芥的表皮毛形成过程是研究植物细胞命运决定的优良模式系统.为了筛选和鉴定控制拟南芥表皮毛形成的新因子,我们进行了大规模的正向遗传筛选,获得了两株莲座叶表皮毛不能形成或数量显著减少的突变体f08-01和vat002-07.通过对突变基因的克隆和遗传...  相似文献   

12.
13.
14.
Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.  相似文献   

15.
The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.  相似文献   

16.
Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single‐celled trichomes that comprise cotton lint fibers. Using mapping‐by‐sequencing, virus‐induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F‐actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F‐actin did not uniformly decorate the nuclear envelope. While wild‐type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization‐defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F‐actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth.  相似文献   

17.
Immunoglobulin from goat antiserum directed against purified surface membranes from transformed BHK21/C13 cells (anti-M) has been shown to cause both control and transformed hamster cells to round and detach from the substrate (see accompanying paper). This paper documents the effects of the antiserum on the cytoskeletal organization and cell surface morphology of control BHK21/C13 cells examined by scanning and transmission electron microscopy. As a result of antiserum-induced rounding, the normally smooth cell surface becomes covered with filopodia and blebs, and the organization of all three components of the filamentous cytoskeleton is altered. In terms of cell surface morphology and cytoskeletal organization, the cells resemble rounded, postmitotic or trypsinized BHK cells rather than cells treated with either anticytoskeletal drugs or lectins. Immunocytochemical and radioimmune assay experiments support the suggestion that the rounding reaction induced by anti-M serum results from the specific interaction of antibodies with molecules on the cell surface. It is suggested that anti-M serum induces alterations in cytoskeletal organization via a transmembrane signal and that cytoskeletal reorganization is a fundamental part of the rounding and detachment process.  相似文献   

18.
Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP–negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain–containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.  相似文献   

19.
The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis   总被引:2,自引:0,他引:2  
Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.  相似文献   

20.
Desmosomes are cell-cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel1, which are centrosomal proteins that regulate microtubule organization and anchoring in other cell types. This recruitment was mediated by a region of DP specific to a single isoform, DPI. Furthermore, we demonstrate that the epidermal-specific loss of Lis1 results in dramatic defects in microtubule reorganization. Lis1 ablation also causes desmosomal defects, characterized by decreased levels of desmosomal components, decreased attachment of keratin filaments, and increased turnover of desmosomal proteins at the cell cortex. This contributes to loss of epidermal barrier activity, resulting in completely penetrant perinatal lethality. This work reveals essential desmosome-associated components that control cortical microtubule organization and unexpected roles for centrosomal proteins in epidermal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号