首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

2.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

3.
The carbon assimilation efficiency and the internal composition of the chlorophyte Dunaliella viridis have been studied under conditions of current (0.035%) and enriched (1%) levels of CO2, with and without N limitation (supplied as nitrate). Results show that both photosynthesis and growth rates are enhanced by high CO2, but the strategy of acclimation also involves the light harvesting machinery and the nutritional metabolism in an N supply dependent manner. D. viridis carried out a qualitative rather than a quantitative acclimation of the light harvesting system leading to increased PSII quantum yields. Total internal C decreased as a consequence of either active growth or organic carbon release to the external medium. The latter process allowed photosynthetic electron transport to proceed at higher rates than under normal CO2 conditions, and maintained the internal C:N balance in a narrow range (under N sufficiency). N limitation generally prevented the effects of high CO2, with some exceptions such as the photosynthetic O2 evolution rate.  相似文献   

4.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

5.
Inorganic carbon limitation of photosynthesis in lake phytoplankton   总被引:5,自引:0,他引:5  
1. Inorganic carbon availability influences species composition of phytoplankton in acidic and highly alkaline lakes, whereas the overall influence on community photosynthesis and growth is subject to debate.
2. The influence of total dissolved inorganic carbon (DIC) and free CO2 on community photosynthesis was studied in six Danish lakes during the summer of 1995. The lakes were selected to ensure a wide range of chlorophyll a concentrations (1–120 μg l–1), pH (5.6–9.6) and DIC concentration (0.02–2.5 m m ). Photosynthesis experiments were performed using the 14C technique in CO2-manipulated water samples, either by changing the pH or by adding/removing CO2.
3. Lake waters were naturally CO2 supersaturated during most of the experimental period and inorganic carbon limitation of photosynthetic rates did not occur under ambient conditions. However, photosynthesis by phytoplankton in lakes with low and intermediate DIC concentrations was seriously restricted when CO2 concentrations declined. Similarly, photosynthesis was limited by low CO2 concentrations during phytoplankton blooms in the hardwater alkaline lakes.  相似文献   

6.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

7.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

8.
Mesophyll cells isolated from Phaseolus vulgaris and Lycopersicon esculentum show decreasing photosynthetic rates when suspended in media containing increasing concentrations of osmoticum. The photosynthetic activity was sensitive to small changes in osmotic potential over a range of sorbitol concentrations from 0.44 M (−1.08 MPa) to 0.77 M (−1.88 MPa). Photorespiration assayed by 14CO2 release in CO2-free air and by 14CO2 release from the oxidation of [1–14C] glycolate also decreased as the osmotic potential of the incubation medium was reduced. The CO2 compensation points of the cells increased with increasing concentration of osmoticum from approximately 60 μ I−11 at −1.08 MPa to 130 μl 1−1 for cells stressed at −1.88 MPa. Changes in photosynthetic and photorespiratory activities occurred at moderate osmotic potentials in these cells suggesting that in whole leaves during a reduction in water potential, non- stomatal inhibition of CO2 assimilation and glycolate pathway metabolism occurs simultaneously with stomatal closure.  相似文献   

9.
Parameters for the evaluation of the effects of photoinhibition on photosynthetic carbon gain were studied in Chenopodium album leaves. The light-response curve of photosynthetic rate was determined at 36 Pa CO2 partial pressure and fitted by a non-rectangular hyperbola. Both the initial slope of the curve and the light-saturated rate decreased in photoinhibited leaves, although the decrease in the latter was small. The convexity of the curve was also smaller in photoinhibited leaves. The capacities of ribulose-1,5-bisphosphate carboxylation ( V cmax) and electron transport ( J max) were estimated from the CO2-response curves. V cmax and J max decreased similarly with increasing photoinhibition. Energy partitioning in photosystem II (PSII) was estimated using chlorophyll fluorescence parameters. The fraction of energy that was consumed by photochemistry decreased with increasing photoinhibition. However, an increase in inactive PSII, decreasing energy partitioning to active PSII, relaxed the excitation pressure in PSII, and led to a reduction in the fraction of excess energy that was neither consumed by photochemistry nor dissipated as heat.  相似文献   

10.
Dactylis glomerata was grown hydroponically in a controlled environment at ambient (360 μl l−1) or elevated (680 μl l−1) CO2 and four concentrations of nitrogen (0.15, 0.6, 1.5 and 6.0 m M NO3), to test the hypothesis that reduction of photosynthetic capacity at elevated [CO2] is dependent on N availability and mediated by a build-up of non-structural carbohydrates. Photosynthetic capacity of the youngest fully expanded leaf (leaf 5, 2 days after full expansion) was reduced in CO2-enriched plants at low, but not high N supply and so the stimulation of net photosynthesis by CO2 enhancement was less at low than at high N supply. CO2 enrichment resulted in a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content on a leaf area basis at 0.6 and 1.5 m M NO3, but not at 0.15 and 6.0 m M NO3, and had no effect on the total N content of the leaf on an area basis. However, decreases in Rubisco content could be primarily accounted for by a decrease in total N content of leaves, independent of [CO2]. A doubling of the Rubisco content by increasing the N supply beyond 0.6 m M had only a marginal effect on the maximum carboxylation velocity in vivo, suggesting that the fraction of inactive Rubisco increased with increasing N supply. Although CO2-enriched plants accumulated more non-structural carbohydrates in the leaf, the reduction of photosynthetic capacity at low N supply was not mediated simply by a build-up of carbohydrates. In D . glomerata , the photosynthetic capacity was mainly determined by the total N content of the leaf.  相似文献   

11.
In May, greenhouse tomato ( Lycopersicon esculentum Mill.) plants near the end of their winter production cycle were shown to exhibit a diurnal photosynthetic decrease. In order to identify the physiological causes of this decline, we compared in May the photosynthetic characteristics of the fifth youngest leaves from tomato plants of different ages corresponding to a winter production (11-month-old plants) and to a spring production (5-month-old plants). Although the leaves were developed simultaneously under the same environmental conditions, only the ones from the winter production showed a diurnal decline of the in situ CO2 assimilation rate (A CO 2). This was accompanied by a decline of internal CO2 and stomatal conductance and by large accumulations of hexoses. When stomatal closure was relieved under saturated CO2 concentration (5%) using a leaf-disc electrode system, the fifth leaves of both tomato cultures had similar maximum quantum efficiency of O2 evolution (Φmax), light-saturated rate of O2 evolution (Pmax) and quantum efficiency of photosystem II (PSII) photochemistry (ΔF/F'm, q P and q N ). We concluded that the diurnal decline of A CO 2 observed in winter tomato production during May originates from a stomatal limitation that is not dependent on environmental conditions but rather related to the developmental stage of the plants.  相似文献   

12.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

13.
Abstract. A controlled-environment chamber constructed from a standard chest freezer was used to grow and measure the CO2 exchange of small stands of lettuce ( Lactuca sativa L. ev. Ambassador). The chamber, with horizontal air flow, provided good control of air temperature ( c. 6 to 16°C), irradiance (0–300 μmol PAR m 2S1 and CO2 (350–1000 μmol mol−1). The photosynthetic response to changes in these variables was measured using an inexpensive CO2 dosing system which recorded the input rate required to maintain a constant concentration of CO2 (to ± 2.5%). Characteristis of the growth environment and the changes in response to temperature and irradiance are described.  相似文献   

14.
Heat stress causes inhibition of photosynthetic CO2 assimilation, affects light photosynthetic reactions and accelerates alternative pathways of plastoquinone pool reduction (APPR). We have studied all these heat-sensitive processes after preheating to a broad range of physiological temperatures (24–46°C) to explore a role of these alternative pathways during heat stress. Primarily, the effective quantum yield of PSII photochemistry was reduced (at 40°C). This PSII downregulation was accompanied by the stimulation of APPR and preceded reduction of photosynthetic CO2 assimilation by 2°; it occurred after preheating at 42°C because of inhibition in Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) activation process. Thus, we suggest that the heat-induced stimulation of APPR is not associated with the heat-induced inhibition of Calvin cycle as it was reported for other types of stresses. A possible role of APPR in the compensation of PSII downregulation is briefly discussed.  相似文献   

15.
Sunflower seedlings ( Helianthus annuus hybrid Select) were grown in a complete nutrient solution in the absence or presence of Cd2+ (10 and 20 μM). Analyses were performed to establish whether there was a differential effect of Cd2+ on mature and young leaves. After 7 d the growth parameters as well as the leaf area had decreased in both mature and young leaves. Accumulation of Cd2+ in the roots exceeded that in the shoots. Seedlings treated with Cd2+ exhibited reduced contents of chlorophyll and CO2 assimilation rate, with a greater decrease in young leaves. The photochemical efficiency of photosystem II (PSII) was not altered by Cd2+ treatment in either mature or young leaves, although during steady-state photosynthesis in young leaves there was a significant alteration in the following parameters: quantum yield of electron transport by PSII (ΦPSII), photochemical quenching ( q P), non-photochemical quenching ( q NP), and excitation capture efficiency of PSII (Φexc).  相似文献   

16.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

17.
Unicellular green alga Chlorella minutissima , grown under extreme carbon dioxide concentrations (0.036–100%), natural temperature and light intensities (Mediterranean conditions), strongly increase the microalgal biomass through photochemical and non-photochemical changes in the photosynthetic apparatus. Especially, CO2 concentrations up to 10% enhance the density of active reaction centers (RC/CSo), decrease the antenna size per active reaction center (ABS/RC), decrease the dissipation energy (DIo/RC) and enhance the quantum yield of primary photochemistry (Fv/Fm). Higher CO2 concentrations (20–25%) combine the above-mentioned photochemical changes with enhanced non-photochemical quenching of surplus energy, which leads to an enhanced steady-state fraction of 'open' (oxidized) PSII reaction centers (qp), and minimize the excitation pressure of PSII (1 − qp) under very high light intensities (approximately 1700 μmol m−2 s1 maximal value), avoiding the photoinhibition and leading to an enormous biomass production (approximately 2500%). In conclusion, these extreme CO2 concentrations – about 1000 times higher than the ambient one – can be easily metabolized from the unicellular green alga to biomass and can be used, on a local scale at least, for the future development of microalgal photobioreactors for the mitigation of the factory-produced carbon dioxide.  相似文献   

18.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

19.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

20.
A range of marine photosynthetic picoeukaryote phytoplankton species grown in culture were screened for the presence of extracellular carbonic anhydrase (CAext), a key enzyme in inorganic carbon acquisition under carbon- limiting conditions in some larger marine phytoplankton species. Of the species tested, extracellular carbonic anhydrase was detected only in Micromonas pusilla Butcher. The rapid, light-dependent development of CAext when cells were transferred from carbon-replete to carbon-limiting conditions was regulated by the available free- CO2 concentration and not by total dissolved inorganic carbon. Kinetic studies provided support for a CO2- concentrating mechanism in that the K 0.5[CO2] (i.e. the CO2 concentration required for the half-maximal rate of photosynthesis) was substantially lower than the K m[CO2] of Rubisco from related taxa, whilst the intracellular carbon pool was at least seven fold greater than the extracellular DIC concentration, for extracellular DIC values 1.0 m m .
It is proposed that when the flux of CO2 into the cell is insufficient to support the photosynthetic rate at an optimum photon irradiance, the development of CAext increases the availability of CO2 at the plasma membrane. This ensures rapid acclimation to environmental change and provides an explanation for the central role of M. pusilla as a carbon sink in oligotrophic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号