首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-14C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The effects of the various naturally occurring amino acids on ethanol oxidation in hepatocytes from starved rats was systematically studied. In order to minimize the non ADH pathways, the ethanol concentration used was 4 mmol/litre, the amino acids being added at the same concentration. In hepatocytes from fasted rats, alanine, arginine, asparagine, aspartate, citrulline, cysteine, glutamate, glutamine, glycine, histidine, hydroxyproline, ornithine and serine increase significantly ethanol consumption. The stimulatory effect of glutamine being much less pronounced than the asparagine one and proline being devoid of action, the influence of ammonium chloride addition on ethanol consumption in the presence of these amino acids was studied. Ammonium chloride determines an enhancement of ethanol oxidation in these conditions, the results showing no apparent correlation between intracellular glutamate concentration and ethanol oxidation rate, contrarily to previous data. In hepatocytes from fed rats, only alanine, asparagine, cysteine, glycine, hydroxyproline, ornithine and serine increase ethanol oxidation, although to a lesser extent than in cells from starved rats.  相似文献   

3.
It has been shown previously that the inhibition of autophagic proteolysis in liver by a physiological mixture of amino acids can be mimicked completely by addition of leucine in combination with alanine [Leverve, X. M., Caro, L. H. P., Plomp, P. J. A. M. and Meijer, A. J. (1987) FEBS Lett. 219, 455-458]. We have now further defined conditions which lead to this inhibition. Isolated rat hepatocytes were incubated in the perifusion system in which the cells can be maintained at a steady state in the presence of low amino acid concentrations. Combinations of leucine (0.5 mM) with either alanine, glutamine, asparagine or proline (2 mM) inhibited proteolysis by 40-50%. Under these conditions, both in the absence and presence of the transaminase inhibitor, aminooxyacetate, a correlation was found between the extent of inhibition of proteolysis and the sum of the total intracellular amounts of aspartate and glutamate. Inhibition of proteolysis by leucine and leucine analogues did not correlate with their ability to activate glutamate dehydrogenase.  相似文献   

4.
The substrate specificities of the amino acid transport systems of vacuoles of the yeast, Saccharomyces cerevisiae, were investigated using purified vacuolar-membrane vesicles (Ohsumi, Y., and Anraku, Y. (1981) J. Biol. Chem. 256, 2079-2082). Ten amino acids: arginine, lysine, histidine, phenylalanine, tryptophan, tyrosine, glutamine, asparagine, isoleucine, and leucine, were taken up actively into the vesicles. Kinetic studies indicated the presence of seven independent H+/amino acid antiport systems with narrow substrate specificity, which were all driven by a proton motive force established by ATP hydrolysis. The Kt and Vmax values, and the specific inhibitors for the arginine, arginine-lysine, histidine, phenylalanine-tryptophan, tyrosine, glutamine-asparagine, and isoleucine-leucine transport systems were determined.  相似文献   

5.
The effects of various amino acids on growth and heterocyst differentiation have been studied on wild type and a heterocystous, non-nitrogen-fixing (het+ nif-) mutant of Anabaena doliolum. Glutamine, arginine and asparagine showed maximum stimulation of growth. Serine, proline and alanine elicited slight stimulation of growth of wild type but failed to show any stimulatory effect on mutant strain. Valine, glutamic acid, iso-leucine and leucine at a concentration of as low as 0.1 mM were inhibitory to growth of parent type. Methionine, aspartic acid, threonine, cysteine, and tryptophan did not affect growth at concentrations lower than 0.5 mM. But at 1 mM, these amino acids were inhibitory. In addition to the stimulatory effects of glutamine, arginine and asparagine, the heterocyst frequency was also repressed by these amino acids. Glutamine and arginine at 2 mM completely repressed heterocyst differentiation in the mutant strain; however, other amino acids failed to repress the differentiation of heterocysts. Our results suggest that glutamine and arginine are utilized as nitrogen sources. This is strongly supported from the data of growth and heterocyst differentiation of mutant strain, where at least with glutamine there is good growth without heterocyst formation. Studies with glutamine and arginine on other N2-fixing blue-green algae may reveal the regulation of the heterocyst-nitrogenase sub-system.  相似文献   

6.
The synthesis and release of alanine and glutamine have been studied in the intact rat epitrochlaris skeletal muscle preparation. Aspartate, cysteine, leucine, valine, methionine, isoleucine, serine, theronine, and glycine increased significantly the formation and release of alanine from muscle. Cysteine, leucine, valine, methionine, isoleucine, tyrosine, lysine, and phenylalanine increased the rate of glutamine synthesis. Only ornithine, arginine, and tryptophan were without effect on the synthesis of either alanine or glutamine. Half-maximal stimulation of alanine and glutamine formation by added amino acids was observed with concentrations ranging between 0.5 and 1.0 mM. Increases in alanine and glutamine formation were not accompanied by changes in pyruvate production or glucose uptake. The progressive decline in alanine and glutamine synthesis noted on prolonged incubation was prevented by the addition of amino acids to the incubation medium. Stimulation of alanine synthesis by added amino acids was unaffected by inhibition of glycolysis with iodoacetate. Inhibition of alanine aminotransferase with aminooxyacetate significantly decreased alanine formation. Pyruvate and ammonium chloride did not increase further the rate of either alanine or glutamine formation above that produced by added amino acids. These data indicate that most amino acids are precursors for alanine and glutamine synthesis in skeletal muscle. A general mechanism is presented for the de novo formation of alanine from amino acids in skeletal muscle, and the importance of proteolysis for the supply of amino acid precursors for alanine and glutamine synthesis is discussed.  相似文献   

7.
The phenacylimidazolium compound LY177507 was shown by Harris et al. (Harris, R. A., Yamanuchi, K., Roach, P. J., Yen, T. T., Dominiani, S. J., and Stephens, T. W. (1989) J. Biol. Chem. 264, 14674-14680) to stimulate glycogen synthesis greatly in isolated rat hepatocytes. We extended studies with this compound, designated proglycosyn (Yamaguchi, K., Stephens, T. W., Chikadar, K., Depaoli-Roach, A., And Harris, R. A. (1991) Diabetes 40, (Suppl. 1) 102 (abstr.] employing hepatocytes from normal and streptozotocin diabetic rats. Proglycosyn is more effective than amino acids in stimulating glycogen synthesis. In cells incubated with glucose, lactate, or dihydroxyacetone the effect of glutamine and proglycosyn was synergistic. In cells incubated with glucose plus lactate, or glucose plus dihydroxyacetone, the stimulation by the two agonists was additive. Proglycosyn diverted the gluconeogenic flux from glucose to glycogen. The maximal rates of glycogen deposition attained in the presence of glutamine and proglycosyn from cells incubated with glucose plus lactate, or glucose plus dihydroxyacetone, where about 80 and 110 mumols/h/g of liver, respectively. Proglycosyn depressed glycogenolysis in hepatocytes of fed rats and stimulated glycogen synthesis from lactate and dihydroxyacetone. The incorporation of [U-14C]glucose and [U-14C]lactate in these cells occurred in the presence of glycogen breakdown or exceeded net production, indicating the occurrence of recycling of glycogen in hepatocytes of fed rats. Hepatocytes from fasted streptozotocin diabetic rats contained high levels of glycogen. Glycogenolysis was markedly depressed by proglycosyn. Glycogen synthesis from lactate and dihydroxyacetone in these cells was stimulated by glutamine and proglycosyn in a fashion similar to that in cells from fasted control rats, and the rates of glycogen synthesis were similar in cells of control and diabetic rats. With glucose as sole substrate, glutamine did not stimulate glycogen synthesis. When both agonists were present, there was a marked synergism and substantial glycogen formation. Streptozotocin diabetic rats prior to the onset of cachexia have a normal capacity for glycogen synthesis.  相似文献   

8.
Glycogen synthesis from various combinations of substrates by hepatocytes isolated from rats fasted 24 h was studied. As reported by Katz et al. (Katz, J., Golden, S., and Wals, P. A. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3433-3437), appreciable rates of glycogen synthesis occurred only in the presence of gluconeogenic precursors and one of several amino acids, which includes L-glutamine. L-Leucine had negligible effects on glycogen synthesis from 20 mM dihydroxyacetone and/or 15 mM glucose when L-glutamine was not added to the medium. In the presence of 10 mM L-glutamine, L-leucine greatly increased glycogen synthesis from these substrates. alpha-Ketoisocaproate was ineffective, as was oleate. NH4Cl depressed glycogen synthesis from 10 mM glucose plus 20 mM dihydroxyacetone in the absence of added L-glutamine and enhanced that in its presence, but these effects were weak compared to those of L-leucine. The amino acid analogues L-norvaline and L-norleucine exerted effects that were similar to those exerted by L-leucine. Under all conditions studied, cycloheximide and puromycin inhibited net glycogen synthesis. Cycloheximide did not stimulate gluconeogenesis from dihydroxyacetone, or phosphorylase in hepatocytes from starved rats, or glycogenolysis in hepatocytes from fed rats. Puromycin, however, stimulated glycogenolysis in hepatocytes from fed rats. Glycogen synthesis from 20 mM dihydroxyacetone proceeds with a pronounced initial lag phase that can be shortened by incubation of cells with glutamine plus leucine before addition of dihydroxyacetone. Concurrent measurements of glycogen synthesis, glycogen synthase, and gluconeogenesis under different conditions reveal that in addition to protein synthesis, activation of glycogen synthase, which must occur to allow glycogen synthesis in hepatocytes, requires a second component which can be satisfied by addition of dihydroxyacetone or fructose to the cells.  相似文献   

9.
Chemotaxis toward amino acids in Escherichia coli   总被引:30,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

10.
A comparison is made of the N- and C-terminal amino acids from 96 published protein sequences, 26 from prokaryotes, 70 from eukaryotes. The observed frequencies of the N-terminal amino acids methionine, alanine and serine in prokaryotes, and alanine and serine in eukaryotes are significantly higher than expected for a random arrangement of amino acids. At the C-terminal end, the observed frequencies of lysine, asparagine and glutamine in prokaryotes and phenylalanine, asparagine and glutamine in eukaryotes exceed random expectation. These results could be explained by specific proteolytic cleavage during protein synthesis.  相似文献   

11.
L-Proline's glycogenic action is unlike that of other amino acids in that it produces effects beyond those explainable by a simple increase in osmolarity (Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M., and Plomp, P. J. A. M. (1990) J. Biol. Chem. 265, 955-959). We postulate that this effect may relate to inhibition of hepatic glucose-6-P hydrolysis by a proline-derived metabolite. We tested this hypothesis with isolated livers from rats fasted 48 h which were perfused with L-proline or L-glutamine. Net glucose and net glycogen production and levels of glucose-6-P and certain other hepatic metabolites were measured. The data obtained support our hypothesis by demonstrating fundamental differences in the metabolic fates of proline and glutamine in the liver. Both pass through alpha-ketoglutarate in the initial stage of gluconeogenesis, but proline supports hepatic glycogen formation while glutamine does not. The concomitant increase in hepatic glucose-6-P and proline-associated glyconeogenesis suggests that inhibition of glucose-6-P hydrolysis by a proline-derived metabolite may divert glucose-6-P produced from proline from glucose production and to glycogen synthesis. This conclusion is supported by the effects of perfusions with and without proline (3-mercaptopicolinate present) on (a) glyconeogenesis and glucose formation from dihydroxyacetone, (b) net glucose uptake and glycogen formation with 30 mM glucose as substrate, and (c) glucose production from endogenous glycogen in perfused livers from fed rats.  相似文献   

12.
Liver metabolism is influenced by hormones and nutrients. Amino acids such as glutamine or leucine induce an anabolic response, which resembles that of insulin in muscle and adipose tissue. In this work, the signalling pathways and the effects of insulin were compared to those of glutamine and leucine in isolated hepatocytes from normal and streptozotocin-diabetic rats. Glutamine increased cell volume and induced an anabolic response characterized by an activation of acetyl-CoA carboxylase (ACC), glycogen synthase (GS) and p70 ribosomal S6 kinase (p70S6K), the key enzymes in fatty acid, glycogen and protein synthesis, respectively. The effects of glutamine were independent of insulin and did not share its signalling components. Leucine, which is poorly metabolized by the liver and does not modify cell volume, activated ACC and p70S6K, and exerted a synergistic effect on the glutamine-induced activation of ACC and p70S6K. These amino acids did not affect insulin signalling. Insulin alone had no anabolic effect in hepatocytes, despite the activation of protein kinase B. Nevertheless, it enhanced the activation of ACC and p70S6K induced by leucine. However, insulin injected intravenously activated rat liver p70S6K. In hepatocytes from streptozotocin-diabetic animals, the metabolic responses to the amino acids and insulin were similar to those in normal hepatocytes. We conclude that glutamine, insulin and leucine exert different effects that are mediated by different signalling pathways, although their effects are combinatory. The anabolic effect of insulin in hepatocytes was strictly dependent on the permissive action of leucine.  相似文献   

13.
Olfactory sensitivity of juvenile (0 year) Atlantic cod Gadus morhua to 20 L‐amino acids was studied by recording electroencephalograms (EEG) from the olfactory bulb. Leucine, methionine, asparagine, glutamine, alanine and threonine were highly stimulatory; proline, phenylalanine, aspartic acid and tryptophan were the least stimulatory. Threshold concentrations determined for four amino acids were 10−8 M for alanine, 10−7 M for arginine and leucine and 10−6 M for glutamic acid.  相似文献   

14.
To explore the mechanism of the stimulation of glycogen synthesis by amino acids (1) we have studied the effects of transaminase inhibitors and of mercaptopicolinic acid, (MPA) an inhibitor of phosphoenol pyruvate carboxykinase. Mercaptopicolinic acid enhanced glycogen synthesis from fructose, dihydroxyacetone and xylitol. Stimulation of glycogen synthesis with hepatocytes from fasted rats by 0.5 mM mercaptopicolinic acid was 50–70% as effective as 10 mM glutamine. With hepatocytes from fed rats, the stimulation of glycogen synthesis by mercaptopicolinic acid was more pronounced, and stimulation by mercaptopicolinic acid and amino acids was additive. Glycogen synthesis as high as 1% in wet weight per hour was attained in hepatocytes with a high initial glycogen content. Over 80% of glycogen synthase was in the active (a) form. Amino oxyacetic acid greatly depressed or abolished the stimulatory effect of glutamine and asparagine and of mercatopicolinic acid, and induced extensive glycogen breakdown in hepatocytes of fed rats.  相似文献   

15.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

16.
《Experimental mycology》1986,10(4):307-314
Variation among isolates ofHypoxylon mammatum caused by amino acids added as sole nitrogen sources demonstrated genetic heterogeneity among the population in the mechanisms regulating hyphal growth rates. Isolates were obtained by a random sample consisting of 22 single ascospore isolates from a local population of hypoxylon cankers onP. tremuloides. Hyphal growth rates were determined from colony diameter measurements on defined media containing either alanine, asparagine, glycine, leucine, lysine, or proline. All isolates but two grew faster on proline than the other amino acids tested. The mean growth rate of the population sample was 3.9 mm day−1 on proline compared to 1.96 mm day−1 on asparagine, the second fastest mean growth rate. Growth rates of the 22 isolates on these six amino acids were largely uncorrelated, indicating independent mechanisms of regulation. Only asparagine gave significant correlations with more than two other amino acids. A more detailed examination of selected isolates representing a range of growth rates on proline showed that the rapid growth rates were also dependent on other materials present in Difco Bacto-Agar. Growth of the proline stimulated isolates was considerably slower on media gelled with Noble agar. Other nitrogen sources, especially glutamate, added with proline stimulated the growth of these isolates. Isolate dependent variation in the stimulatory effect of the N source added with proline was demonstrated. Stimulation of growth rate by proline may be related to drought stress-enhanced canker elongationin vivo, since drought stress caused proline accumulation in the host,Populus tremuloides.  相似文献   

17.
The metabolic effects of beta-(+/-)-2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (BCH), a nonmetabolizable analog of leucine and known activator of glutamate dehydrogenase, were studied in hepatocytes isolated from fed and fasted rats. With glutamine as substrate, BCH stimulated in a concentration-dependent manner urea synthesis in both physiological states and glucose formation in hepatocytes from fasted rats. Despite the much higher rates of ureagenesis in the fasted animals, the degree of stimulation by BCH, over 2-fold, was similar. The effect of the drug was specific for glutamine since the rates of urea synthesis from NH4Cl, alanine, and asparagine were essentially unaltered. The stimulation of glutamine catabolism by BCH led to a decrease in the content of intracellular glutamine. The redox states of the mitochondrial and cytosolic nicotinamide adenine dinucleotides remained unaltered. In hepatocytes isolated from fasted rats and incubated with 5 mM glutamine the BCH-induced increases in urea, ammonia, and the amino acids, glutamate, aspartate, and alanine, accounted fully for the 2.4-fold rise in glutamine utilization. The stimulatory effects of BCH and glucagon on the formation of glucose, urea, and 14CO2 from [U-14C]glutamine were additive. Aminooxyacetate, and inhibitor of transaminases, neither blocked glutamine catabolism (as measured by the sum of urea, ammonia, and glutamate) nor prevented its activation by BCH. It is suggested that, in isolated hepatocytes, BCH-induced stimulation of glucose and urea formation from glutamine results from activation of glutaminase by a mechanism which is distinct from that of glucagon.  相似文献   

18.
Mechanism of activation of liver glycogen synthase by swelling.   总被引:4,自引:0,他引:4  
The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High concentrations of KCl, but not of potassium glutamate, were found to inhibit glycogen synthesis in permeabilized hepatocytes. Similarly, physiological concentrations (30-50 mM) of Cl- ions were also found to inhibit synthase phosphatase in vitro, whereas 10-20 mM Cl- ions, a concentration found in swollen hepatocytes, did not inhibit synthase phosphatase. Synthase phosphatase activity was more sensitive to inhibition by Cl- ions at low (0.1%) than at high (1%) concentrations of glycogen. By contrast, 10 mM glutamate and aspartate, a concentration observed in hepatocytes incubated with glutamine or proline, stimulated synthase phosphatase in vitro. Therefore, it is proposed that the fall in intracellular Cl- concentration as well as the increase in intracellular glutamate and aspartate concentrations, that are observed in swollen hepatocytes in the presence of amino acids, are responsible, at least in part, for the stimulation of synthase phosphatase and, hence, of glycogen synthesis.  相似文献   

19.
The murine myeloma cell line Sp 2/0-Ag 14 was cultured in an ordinary batch culture and in a glutamine limited fed-batch culture. In batch culture, the overflow metabolism of glutamine ends in excess production of ammonium and the amino acids alanine, proline, ornithine, asparagine, glutamate, serine and glycine. This pattern was dramatically changed in the fed-batch culture. Glutamine limitation halved the cellular ammonium production and reduced the ratio of NH4 +/glutamine. The excess production of alanine, proline and ornithine was reduced by a factor of 2–6 while asparagine was not produced at all. In contrary to the other amino acids glycine production was increased. These results are discussed in view of the different nature of glutamine metabolism in the mitochondrial compartment vs. the cytosolic. Furthermore, essential amino acids were used more efficiently in the fed-batch as judged by the increase in the cellular yield coefficients in the range of 1.3–2.6 times for seven of the 11 consumed ones. In all, this leads to a more efficient use of the energy sources glucose and glutamine as revealed by an increase in the cellular yield coefficient for glucose by 70% and for glutamine by 61%.  相似文献   

20.
The objective of the study is to analyze plasma amino acid concentrations in propionic acidemia (PA) for the purpose of elucidating possible correlations between propionyl-CoA carboxylase deficiency and distinct amino acid behavior. Plasma concentrations of 19 amino acids were measured in 240 random samples from 11 patients (6 families) with enzymatically and/or genetically proven propionic acidemia (sampling period, January 2001–December 2007). They were compared with reference values from the literature and correlated with age using the Pearson correlation coefficient test. Decreased plasma concentrations were observed for glutamine, histidine, threonine, valine, isoleucine, leucine, phenylalanine and arginine. Levels of glycine, alanine and aspartate were elevated, while values of serine, asparagine, ornithine and glutamate were normal. For lysine, proline and methionine a clear association was not possible. Significant correlations with age were observed for 13 amino acids (positive correlation: asparagine, glutamine, proline, alanine, histidine, threonine, methionine, arginine; negative correlation: leucine, phenylalanine, ornithine, glutamate and aspartate). This study gives new insight over long-term changes in plasma amino acid concentrations and may provide options for future therapies (e.g., substitution of anaplerotic substances) in PA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号