首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three groups of pigs were studied during and after 10 weeks of treatment with either Al(OH)3 (Al[OH]3-group, n=8) to induce hypophosphatemia, A1P04 (AlP04-group, n=8, aluminium control without hypophosphatemia) or no addition to the feed (control group, n=8). Blood samples were taken at the start of the experiment and after 3, 6 and 10 weeks and were analyzed for phosphate, calcium and 2,3-diphosphoglycerate (2,3-DPG). Samples from myocardium, skeletal muscle and liver were obtained in connection with exsanguination and analyzed for glycogen, adenosine-tri-phosphate (ATP), creatine phosphate (CP), glucose-6-phosphate (G-6-P) and lactate. The Al(OH)3-group became hypophosphatemic and hypercalcémie with low levels of 2,3-DPG in erythrocytes within 3 weeks and showed a retarded growth rate. After 10 weeks the Al(OH)3-group had low levels of ATP in myocardium as compared with the control-group and low levels of G-6-P as compared with the AlP04-group. No disturbances on electro-cardiograms registered at rest could be documented. G-6-P concentration was low in the biceps muscle in the Al(OH)3-group as compared with the AlP04-group and in the liver low G-6-P concentration was seen in addition to high lactate concentration. The fibre type composition in M. Longissimus did not differ between groups, but the Al(OH)3-group had, due to retardation in growth, smaller mean fibre-areas than pigs in the AlP04-group. Hypophosphatemia gave rise to high serum calcium levels, low concentration of 2,3-DPG in erythrocytes and influenced G-6-P concentration in skeletal muscle, G-6-P and ATP in myocardium, G-6-P and lactate in liver. Retarded growth was one serious consequence of hypophosphatemia and the disturbed energy metabolism.  相似文献   

2.
Eleven male sport students (age 23.3 +/- 1.7 years) exercised for 2 h on a bicycle ergometer (60 rpm), the braking force of which was regulated to yield a constant pulse rate (156 +/- 3 min-1). Before, at end of, and 3 and 6 h after exercise blood was sampled from a cubital vein and an earlobe for measurement of hemoglobin (Hb) concentration, hematocrit (Hct) value, osmolality (Osm), plasma protein (Prot), sodium (Na+), potassium (K+), inorganic phosphate (Pi), and lactate (Lac) concentrations, red cell 2,3-diphosphoglycerate (DPG) and adenosin triphosphate (ATP) concentrations, acid base status and half saturation pressure (P50) of the oxygen dissociation curve. At end of exercise [Hb], Hct, [Prot], Osm, [K+], [Pi] and [Lac] were significantly elevated, pH in ear lobe (+ 0.04) and venous blood (+ 0.08) was also increased by both respiratory and nonrespiratory effects (BE + 1.4 mmol/l). The oxygen dissociation curve showed an unexplained slight right shift (standard P50 + 0.19 kPa). During the post-exercise period most parameters approximated to control values after only 3 h. [Prot] and especially [Pi], however, remained elevated while [DPG] slightly rose during the post-exercise period. It is suggested that these changes are first signs of adaptation to exercise, perhaps caused by endocrine stimulation.  相似文献   

3.
Vanadate is known to inhibit several phosphatases including Na+, K+-ATPase, alkaline phosphatase, and glyceraldehyde-3-P dehydrogenase. Inhibition presumably results because vanadium adopts a stable structure which resembles the transition state of phosphate during the reactions involving these enzymes. We performed experiments to further examine the effects of vanadate (VO3-4) on erythrocyte (red blood cells (RBC] glycolytic intermediates. RBC obtained from human subjects were centrifuged and washed with lactated Ringer's 5% dextrose. 31P nuclear magnetic resonance analysis of the RBC revealed the characteristic peaks for the 3-phosphate and 2-phosphate of 2,3-diphosphoglycerate (DPG), inorganic phosphate (Pi), and ATP. Incubation of RBC with 10(-6) M VO3-4 led to a disappearance of ATP and 2,3-DPG while the peak for Pi increased. By the end of 4 h over 90% of the VO3-4 had been reduced to VO2+ (vanadyl) in the RBC. The effects of 10(-4) M iodoacetamide and 10(-5) M ethacrynic acid, known inhibitors of glyceraldehyde-3-P dehydrogenase that act by interactions with sulfhydryl groups (-SH) of the enzyme, were similar to those of VO3-4. Incubation with vanadyl did not affect the peaks for Pi, 2-DPG, or 3-DPG. Furthermore, using electron spin resonance we demonstrated that in the presence of glyceraldehyde-3-P dehydrogenase, VO3-4 is reduced to VO2+. The findings demonstrate that VO3-4 inhibits glycolysis at micromolar concentrations and that the ion is reduced to VO2+ in the cell. The similarity of the effect of VO3-4 to those of iodoacetamide and ethacrynic acid suggests that interactions with -SH groups is its mechanism of inhibition. Since under physiological conditions intracellular VO3-4 concentrations are in the micromolar range and may exist in oxidized and/or reduced forms, VO3-4 could regulate the activity of glyceraldehyde-3-P dehydrogenase through changes in the redox state of the enzyme rather than by substituting for the PO3-4 ion.  相似文献   

4.
A new abnormal hemoglobin, Hb Kariya [alpha 40 (C5) Lys leads to Glu], with an amino acid substitution at the alpha 1 beta 2 contact was discovered in a young Japanese man. This variant migrated to the anode faster than Hb A, being nearly the same as Hb I in electrophoretic mobility. It amounted to about 6% of the total hemoglobin of the hemolysate. This hemoglobin showed an increased oxygen affinity, decreased heme-heme interaction and a lowered 2,3-DPG effect.  相似文献   

5.
The synthesis of labile hemoglobin A1 in vivo was studied in subjects with non-insulin dependent diabetes mellitus, impaired and normal glucose tolerance. The labile hemoglobin A1 index defined as delta labile hemoglobin A1 divided by delta plasma glucose at 30 min after oral glucose load, representing the rate of labile hemoglobin A1 synthesis in vivo, was low in diabetic subjects and high in normal subjects, showing an inverse correlation with the amount of preexisting hemoglobin A1. The study on the synthesis of labile hemoglobin A1 in vitro showed a lower initial rate of synthesis and a smaller increase in labile hemoglobin A1 at saturation in red blood cells from diabetic subjects with a relatively large amount of preexisting hemoglobin A1, as opposed to red blood cells from normal subjects. Although the further study is necessary in which delta plasma glucose levels are kept relatively constant in each of 3 groups by glucose-clamp methods, our data suggest that the synthesis of labile hemoglobin A1 is limited in vivo and in vitro in diabetic subjects by the preexisting hemoglobin A1 due to the saturability of its synthesis.  相似文献   

6.
J M Rifkind  J M Heim 《Biochemistry》1977,16(20):4438-4443
Stripped human hemoglobin was shown to have a high apparent zinc association constant of 1.3 X 10(7) M-1 with a stoichiometry of one zinc for every two hemes. The saturation of this site produces a dramatic 3.7-fold increase in the oxygen affinity. The effect of zinc on the oxygen affinity is interrelated with the interaction of 2,3-diphosphoglyceric acid (2,3-DPG) and hemoglobin. Thus, a smaller zinc effect is observed in the presence of added 2,3-DPG. Information about the location of the zinc-binding site responsible for the increased oxygen affinity has been obtained by comparing the binding of zinc to various hemoglobins. Blocking the beta93 sulfhydryl group decreases the apparent zinc association constant by an order of magnitude. The substitution of histidine-beta143 in hemoglobin Abruzzo [beta143 (H21) His leads to Arg] and hemoglobin Little Rock [beta143 (H21) His leads to Gln] decreases the apparent zinc association constant by two orders of magnitude. The substitution of histidine-beta143 by other amino acids and the reaction of the beta93 sulfhydryl group are known to produce dramatic increases in the oxygen affinity. The binding of zinc to one or both of these amino acids can, therefore, explain the zinc-induced increase in the oxygen affinity.  相似文献   

7.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

8.
The effects of 2,3 diphosphoglyceric acid (2,3-DPG), adenosine triphosphate (ATP), and inositol hexaphosphate (IHP) on the oxygen affinity of whole “stripped” hemoglobin (WSH), hemoglobin H (Hb-H), hemoglobin A (Hb-A) and hemoglobin D (Hb-D) isolated from 18-day chick embryo blood have been determined. The effect of the three organic phosphates upon the oxygen dissociation curves is similar and the following order of decreasing oxygen affinity of the organic phosphates was observed for each hemoglobin: 2,3-DPG < ATP < IHP. 2,3-DPG appears to have a slightly greater effect upon the P50 of Hb-H than upon that of either of the two adult-type hemoglobins. However, this effect seems insufficient to suggest a preferential interaction of 2,3-DPG with Hb-H which would account for either the large amounts of 2,3-DPG in the erythrocytes of embryos or the higher oxygen affinity of the whole blood. The effects of the organic phosphates upon the Hill constant of the purified hemoglobins are variable. It is concluded that since the distribution of hemoglobins H, A, and D in the erythrocytes during the developmental period from 18-day embryos to 6-day chicks remains fairly constant, the previously described progressive decrease in oxygen affinity of the whole blood during this period results from changes in the total amount and distribution of the intraerythrocytic organic phosphates.2  相似文献   

9.
The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.  相似文献   

10.
1. Pigeon erythrocyte pyruvate kinase (PK) was purified 22,000 fold by successive column chromatography on Sephadex DEAE A-50 and Red Agarose. The resulting enzyme preparation had a specific activity of 815.3 U/mg protein and an overall yield of 18.5%. 2. The molecular weight, as determined by gel filtration on Sephadex G-200 was 152,000. 3. Isoelectric focusing in the pH range of 3-10 showed that pigeon erythrocyte contained at least 3 PK isozymes with isoelectric points of 5, 5.7 and 6. 4. The variation of activity of PK at various ADP and phosphoenolpyruvate (PEP) concentrations was studied. The Km values for ADP and PEP were 0.40 and 0.46 mM respectively. 5. The enzyme was activated by FDP, and inhibited by ATP, highly phosphorylated inositol derivatives and 2,3-DPG: 6. It was activated by K+ and Mg2+ ions. 7. Phosphorylated hexoses and Pi stimulated the activity of PK. 8. The regulatory role of PK of pigeon erythrocytes, which lack the typical 2,3-DPG bypass, is discussed.  相似文献   

11.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

12.
The development of chemical modification agents that reduce the tendency of sickle hemoglobin (HbS) to aggregate represents an important chemotherapeutic goal. Methyl acetylphosphate (MAP) has been reported to bind to the 2,3-diphosphoglycerate (2,3-DPG) binding site of hemoglobin, where it selectively acetylates residues, resulting in increased solubility of HbS. We have prepared [1-(13)C]MAP and evaluated the adduct formation with hemoglobin using (1)H-(13)C HMQC and HSQC NMR studies. These spectra of the acetylated hemoglobin adducts showed 10-11 well resolved adduct peaks, indicating that the acetylation was not highly residue specific. The chemical shift pattern observed is in general similar to that obtained recently using [1'-(13)C]aspirin as the acetylating agent (Xu, A. S. L., Macdonald, J. M., Labotka, R. J., and London, R. E. (1999) Biochim. Biophys. Acta 1432, 333-349). Blocking the 2, 3-DPG binding site with inositol hexaphosphate (IHP) resulted in a selective reduction in intensity of adduct resonances, presumably corresponding to residues located in the 2,3-DPG binding cleft. The pattern of residue protection appeared to be identical to that observed in our previous study using IHP and labeled aspirin. Pre-acetylation of hemoglobin using unlabeled MAP, followed by acetylation with [1'-(13)C]aspirin indicated a general protective effect, with the greatest reduction of intensity for resonances corresponding to acetylated residues in the 2,3-DPG binding site. These studies indicated that both MAP and aspirin exhibit similar, although not identical, acetylation profiles and target primarily the betaLys-82 residue in the 2,3-DPG binding site, as well as sites such as betaLys-59 and alphaLys-90, which are not located in the beta-cleft of hemoglobin.  相似文献   

13.
1. Resting rates of Rana ridibunda erythrocyte glucose consumption and 14CO2 production from 1-14C-glucose were found to be significantly lower than the respective values in human erythrocytes. 2. In the presence of 1-14C-glucose Methylene Blue stimulated 14CO2 production 7-fold, while in the presence of 6-14C-glucose Methylene Blue stimulated 14CO2 production 1.2-fold. 3. The Km of G-6-PD for G-6-P and NADP were 29 and 12 microM, respectively while the Km of 6-PGD for 6-PG and NADP were 83 and 32 microM, respectively. The Ki of G-6-PD and 6-PGD for NADPH were 80 and 12 microM, respectively. 4. Excess amounts of NADP resulted in a significant decrease of 14CO2 production from 1-14C-glucose in total haemolysates. 5. ATP, ADP and fructose diphosphate inhibited both G-6-PD and 6-PGD, the latter being more sensitive than G-6-PD to their inhibitory effect, 2,3-DPG and reduced and oxidized glutathione showed a marked inhibitory effect on 6-PGD, while the phosphorylated trioses inhibited only G-6-PD. 6. Physiological concentrations of oxidized glutathione decreased the inhibition exercised by NADPH on G-6-PD. 7. The possible role of the two dehydrogenases in the regulation of the HMS is discussed.  相似文献   

14.
To determine the relative contributions of glucose transport/hexokinase, glycogen synthase (GSase), and glycolysis to the control of insulin-stimulated muscle glycogen synthesis, we combined 13C and 31P NMR to quantitate the glycogen synthesis rate and glucose 6-phosphate (G-6-P) levels in rat (Sprague-Dawley) gastrocnemius muscle during hyperinsulinemia at euglycemic (E) and hyperglycemic (H) glucose concentrations under thiopental anesthesia. Flux control was calculated using metabolic control analysis. The combined control coefficient of glucose transport/hexokinase (GT/Hk) for glycogen synthesis was 1.1 +/- 0.03 (direct measure) and 1.14-1.16 (calculated for a range of glycolytic fluxes), whereas the control coefficient for GSase was much lower (0.011-0.448). We also observed that the increase in in vivo [G-6-P] from E to H (0.22 +/- 0.03 to 0.40 +/- 0.03 mM) effects a supralinear increase in the in vitro velocity of GSase, from 14.6 to 26.1 mU. kg(-1). min(-1) (1.8-fold). All measurements suggest that the majority of the flux control of muscle glycogen synthesis is at the GT/Hk step.  相似文献   

15.
The proplastid fraction containing no cytosol and mitochondrionwas isolated from developing castor bean endosperm by stepwisesucrose density centrifugation. This fraction possesses thecapacity to synthesize LFAs from [u-14C]sucrose, [u-14C]-glucose,[u-14C]G-1-P, [u-14C]G-6-P, [2-14C]pyruvate and [1-14C]acetate.Little was incorporated from [1-14C]pyruvate into LFAs, butmuch into 14COa. Addition of cytosol to the proplastid fractiondid not enhance the LFA synthesis. From these data, the wholepath from sucrose to LFAs through glycolytic path and pyruvatedecarboxylation seems to be located within the proplastid indeveloping castor bean endosperm. The difference in utilizationof substrates indicates that the rate of LFA synthesis in castorbean proplastids is limited at a step between sucrose and hexosephosphate. In addition, experiments with CO2 output and LFAsynthesis from [1-14C]glucose, [6-14C]glucose and [u-14C]G-6-Pstrongly suggest that the path flow branches actively throughG-6-P to the pentose phosphate path and little through acetylCoAto the TCA cycle. (Received May 12, 1975; )  相似文献   

16.
In vitro the rate of synthesis of the aldiminic linkage between Hb and glucose depends on glucose concentration, length of incubation and some other physiological factors. To understand better the regulation of this synthesis and to verify the role of cell age and of basal HbA1 levels on the rate of synthesis of pre-A1, we studied red cells from 7 normal controls and 7 diabetics, with high HbA1 levels. We found that the content of HbA1 (stable glycosylated hemoglobin) is able to negatively affect the rate of synthesis of new pre-A1, according to a curvilinear model. These results suggest that in vitro the glycosylation process is saturable, and that elevated values of HbA1 are able to slow the synthesis of pre-A1 in vitro.  相似文献   

17.
Bovine red cells do not contain appreciable amounts of 2,3-diphosphoglycerate (2,3-DPG). Bovine hemoglobin, however, has a particular sensitivity to chloride ions and as a result it can attain oxygen affinity values lower than those measured for human hemoglobin in the presence of 2,3-DPG. The interaction of bovine hemoglobin with anions is modulated by the hydrophobic characteristics of the protein. Comparison of the hydropathy plots of primate and ruminant hemoglobins indicates constant regions of opposite hydrophobicity, which have fixed amino acid differences. A model is proposed for explaining the regulation of oxygen affinity by chlorides, as an alternative to the classic modulation by 2,3-DPG.  相似文献   

18.
A systematic study of the pH dependent changes in the range 6.6--7.4 of 2,3 bisphosphoglycerate (2,3-DPG) was performed in the presence and absence of glucose during transitional and steady states. The results indicate that 2,3-DPGase breaks down 2,3-DPG nealy independent of pH at a rate of 480 mu moles 2,3-DPG/1 cells.h. The 2,3-DPG mutase is practically completely inhibited below pH 6.9. The 2,3-DPG level in the presence of glucose reaches a pH dependent steady state after about 18 h. The share of the 2,3-DPG bypass in the steady state decreases from 24% at pH 7.4 to 12% at pH 7.0. The formation of pyruvate corresponds to the beadkdown of 2,3-DPG after consumption of an unknown reducing substance.  相似文献   

19.
To examine the mechanism by which muscle glycogen limits its own synthesis, muscle glycogen and glucose 6-phosphate (G-6-P) concentrations were measured in seven healthy volunteers during a euglycemic ( approximately 5.5 mM)-hyperinsulinemic ( approximately 450 pM) clamp using (13)C/(31)P nuclear magnetic resonance spectroscopy before and after a muscle glycogen loading protocol. Rates of glycogen synthase (V(syn)) and phosphorylase (V(phos)) flux were estimated during a [1-(13)C]glucose (pulse)-unlabeled glucose (chase) infusion. The muscle glycogen loading protocol resulted in a 65% increase in muscle glycogen content that was associated with a twofold increase in fasting plasma lactate concentrations (P < 0.05 vs. basal) and an approximately 30% decrease in plasma free fatty acid concentrations (P < 0.001 vs. basal). Muscle glycogen loading resulted in an approximately 30% decrease in the insulin-stimulated rate of net muscle glycogen synthesis (P < 0.05 vs. basal), which was associated with a twofold increase in intramuscular G-6-P concentration (P < 0.05 vs. basal). Muscle glycogen loading also resulted in an approximately 30% increase in whole body glucose oxidation rates (P < 0.05 vs. basal), whereas there was no effect on insulin-stimulated rates of whole body glucose uptake ( approximately 10.5 mg. kg body wt(-1). min(-1) for both clamps) or glycogen turnover (V(syn)/V(phos) was approximately 23% for both clamps). In conclusion, these data are consistent with the hypothesis that glycogen limits its own synthesis through feedback inhibition of glycogen synthase activity, as reflected by an accumulation of intramuscular G-6-P, which is then shunted into aerobic and anaerobic glycolysis.  相似文献   

20.
The dependence of ATP synthesis coupled to electron transfer from 3-hydroxy-butyrate (3-OH-B) to cytochrome c on the intramitochondrial pH (pHi) was investigated. Suspensions of isolated rat liver mitochondria were incubated at constant extramitochondrial pH (pHe) with ATP, ADP, Pi, 3-OH-B, and acetoacetate (acac) (the last two were varied to maintain [3-OH-B]/[acac] constant), with or without sodium propionate to change the intramitochondrial pH. Measurements were made of the steady-state water volume of the mitochondrial matrix, transmembrane pH difference, level of cytochrome c reduction, concentration of metabolites and rate of oxygen consumption. For each experiment, conditions were used for which transmembrane pH was near maximal and minimal values and the measured extramitochondrial [ATP], [ADP], and [Pi] were used to calculate log[ATP]/[ADP][Pi]. When [3-OH-B]/[acac] and [cyt c2+]/[cyt c3+] were constant, and pHi was decreased from approx. 7.7 to 7.2, log [ATP]/[ADP][Pi] at high pHi was significantly (P less than 0.02) greater than at low pHi. The mean slope (delta log [ATP]/[ADP][Pi] divided by the change in pHi) was 1.08 +/- 0.15 (mean +/- S.E.). This agrees with the slope of 1.0 predicted if the energy available for ATP synthesis is dependent upon the pH at which 3-hydroxybutyrate dehydrogenase operates, that is, on the pH of the matrix space. The steady-state respiratory rate and reduction of cytochrome c were measured at different pHi and pHe values. Plots of respiratory rate vs.% cytochrome c reduction at different intra- and extramitochondrial pH values indicated that the respiratory rate is dependent upon pHi and not on pHe. This implies that the matrix space is the source of protons involved in the reduction of oxygen to water in coupled mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号