首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The genus Ophiostoma includes numerous species of primarily insect-vectored, wood-staining fungi. Several anamorph genera that differ in their micronematous or macronematous conidiogenous cells have been associated with Ophiostoma species. Among the former group, Sporothrix is associated with many species and is characterized by conidiogenous cells that arise laterally or terminally from any place on the hyphae and produce nonseptate conidia on sympodially developing denticles. The purpose of this study was to characterize ophiostomatoid isolates with Sporothrix anamorphs recently collected in Austria and Azerbaijan. The isolates were characterized based on comparisons of rDNA and β-tubulin sequence data. Morphology, growth in culture, and sexual reproductive mode were also considered. Phylogenetic analyses of the combined sequence data showed that the isolates formed two distinct groups, one including isolates from Austria and the other isolates from Austria and Azerbaijan. Growth at 25 C and morphology revealed some differences between the two groups, and supported the view that they represent two new species, which we describe here as Ophiostoma fusiforme sp. nov. and Ophiostoma lunatum sp. nov. Both these groups phylogenetically were related to, but distinct from, Ophiostoma stenoceras.  相似文献   

5.
6.
7.
Madrid H  Gené J  Cano J  Silvera C  Guarro J 《Mycologia》2010,102(5):1193-1203
Sporothrix inflata is a saprobic member of the Ophiostoma stenoceras-Sporothrix schenckii species complex, reported mainly from soil. Ophiostoma bragantinum, an ascomycete described from Brazil, has been proposed as its possible teleomorph. Previous studies revealed that Sporothrix inflata is phenotypically and genetically variable, suggesting the existence of cryptic species. During a continued survey on the biodiversity of microfungi from different countries, seven isolates morphologically similar to S. inflata were obtained from soil samples collected in Spain and USA. In this study their phenotypic features and phylogenetic relationships were assessed. DNA sequence data of two nuclear loci revealed that these isolates correspond to two unnamed clades in S. inflata s.l., one of which also included the type strain of Humicola dimorphospora, a species that traditionally has been considered a synonym of S. inflata. These two groups are proposed herein as Sporothrix brunneoviolacea sp. nov. and Sporothrix dimorphospora comb. nov. S. brunneoviolacea is characterized phenotypically by the production of a diffusible violet-brown pigment in culture and mostly globose, pigmented, lateral blastoconidia. On the other hand S. dimorphospora lacks diffusible pigments and shows mostly subglobose to obovoid pigmented lateral blastoconidia. In contrast to the type strain of S. inflata S. brunneoviolacea and S. dimorphospora assimilate raffinose. The phylogenetic analysis suggested that the proposed anamorph-teleomorph connection between S. inflata and O. bragantinum might not be correct.  相似文献   

8.
Entomochoric spore dispersal is well-documented for most ophiostomatoid fungal genera, most of which are associated with bark or ambrosia beetles. Gondwanamyces spp. are unusual members of this group that were first discovered in the flower heads of the primitive angiosperm genus Protea, that is mostly restricted to the Cape Floristic region of Africa. In this study, we present the discovery of the vectors of Gondwanamyces proteae in Protea repens infructescences, which were identified using PCR, direct isolation, and light microscopy. Gondwanamyces proteae DNA and ascospores were identified on diverse lineages of arthropods including beetles (Euderes lineicolis and Genuchus hottentottus), bugs (Oxycarenus maculates), a psocopteran species and five mite (Acari) species. Based on isolation frequency, however, a mite species in the genus Trichouropoda appears to be the most common vector of G. proteae. Gondwanamyces spores were frequently observed within pit mycangia at the base of the legs of these mites. Manipulative experiments demonstrated the ability of mites to carry viable G. proteae spores whilst in transit on the beetle G. hottentottus and that these mites are able to transfer G. proteae spores to uncolonised substrates in vitro. Interestingly, this same mite species has also been implicated as vector of Ophiostoma spores on P. repens and belongs to the same genus of mites that vector Ophiostoma spp. associated with pine-infesting bark beetles in the Northern Hemisphere.  相似文献   

9.
10.
11.
Estimations of global fungal diversity are hampered by a limited understanding of the forces that dictate host exclusivity in saprobic microfungi. To consider this problem for Gondwanamyces and Ophiostoma found in the flower heads of Protea in South Africa, we determined the role of various factors thought to influence their host exclusivity. Results showed that various biotic and abiotic factors influence the growth and survival of these fungi in vitro. Monitoring temperature and relative humidity (RH) fluctuations within infructescences in vivo revealed considerable microclimatic differences between different Protea spp. Fungal growth and survival at different RH levels experienced in the field suggested that this factor does not play a major role in host exclusivity of these fungi. Maximum temperatures within infructescences and host preferences of the vectors of Gondwanamyces and Ophiostoma appear to play a substantial part in determining colonisation of Protea in general. However, these factors did not explain host exclusivity of specific fungal species towards particular Protea hosts. In contrast, differential growth of fungal species on media containing macerated tissue of Protea showed that Gondwanamyces and Ophiostoma grow best on tissue from their natural hosts. Thus, host chemistry plays a role in host exclusivity of these fungi, although some species grew vigorously on tissue of Protea spp. with which they are not naturally associated. A combination of host chemistry and temperature partially explains host exclusivity, but the relationship for these factors on the tested saprobic microfungi and their hosts is clearly complex and most likely includes combinations of various biotic and abiotic factors including those emerging from this study.  相似文献   

12.
Vismer  H.F.  Hull  P.R. 《Mycopathologia》1997,137(3):137-143
Sporotrichosis is a subcutaneous fungal infection caused by the traumatic implantation of the dimorphic, pathogenic fungus, Sporothrix schenkii. It constitutes the most common subcutaneous fungal infection in the general population in South Africa. Sporotrichosis in South Africa dates back to 1914, when the disease was first diagnosed in the gold mines. Occupational and recreational circumstances of infection are well established, and the environmental requirements for contracting the disease are better understood. Sporotrichosis cases were recorded from 42 suburbs in the greater Pretoria area as well as from 23 towns outside the Pretoria municipal boundary. It occurred in 154 patients with ages ranging from less than 1 year to 90 years old, with males predominating. Females in the area seemed to be at lesser risk, mainly becoming infected through gardening injuries, insect bites or other minor injuries due to outdoor activities. Exposure to possible sources of the fungus, either from recreational or occupational activities in males, was the main determining factor in acquiring the disease. The lymphocutaneous and localized forms of the disease were most often recorded. Our study indicates that, while there is no pronounced seasonal variation, the onset of the disease seemed to be mainly in the cooler and dryer months of the year. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Background and AimsGlobal plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness.MethodsWe evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort.Key ResultsWhile intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37–0.64), and almost all traits had detectable associations with plant fitness.ConclusionsIntraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.  相似文献   

14.
A species ofSporothrix was consistently isolated from leaf spots and serious shoot infections on a clone ofEucalyptus grandis in Northern Natal, South Africa. The fungus was morphologically distinct from other species in the genus and is consequently described as a new taxon,S. eucalypti. Sporothrix eucalypti was shown to be highly virulent in pathogenicity tests on a number ofE. grandis clones. Significant differences amongst susceptibility of clones were also detected in these tests.Sporothrix eucalypti represents a new pathogen ofEucalyptus that has the potential to cause substantial damage to this host in South Africa and probably elsewhere in the world.  相似文献   

15.
Sporothrix, one of the anamorph genera of Ophiostoma, includes the important human pathogen S. schenckii and various fungi associated with insects and sap stain of wood. A survey of fungi from wood utility poles in South Africa yielded two distinct groups of Sporothrix isolates from different geographical areas. DNA sequence and morphological data derived in this study showed that isolates in these groups represent two novel species in the S. schenckii-O. stenoceras species complex. A new species isolated from pine poles and rosebush wood and phylogenetically closely related to S. pallida is described here as Sporothrix stylites. Phylogenetic analyses also confirmed the synonymy of S. albicans and S. nivea with S. pallida. Sporothrix stylites and S. pallida also are related closely to the isolates from soil, previously treated as "environmental" isolates of S. schenckii. Soil isolates are clearly distinct from human isolates of S. schenckii. We describe the former here as Sporothrix humicola. The isolates from eucalypt poles group peripheral to most other species in the S. schenckii-O. stenoceras complex and are newly described as Sporothrix lignivora. Phylogenetic analyses of sequences of isolates from soil and wood together with those of clinical isolates showed that the human-pathogenic strains form an aggregate of several cryptic species.  相似文献   

16.
17.
18.
A key is given to the seven species of Lygidolon now recognised, four of which are described as new. Lygus flavoscutellatus Lindberg is transferred to Lygidolon and given a new name. Lygidolon Reuter Reuter, 1907: 14–15; type-species, L. laevigatum  相似文献   

19.
We collected 22,769 adult female mosquitoes, representing 27 species, from light traps in Norfolk, Virginia (2006–2007) and examined them to assess infestation by larval mites. Mosquitoes were parasitized by two species of aquatic (Acari: Arrenuridae: Arrenurus) and three species of terrestrial mites (Acari: Erythraeidae). The prevalence of infestation varied from 0.55% (2006) to 0.17% (2007). The mean intensity of parasitism ranged from 3.6 mites per host (2006) to 1.8 mites per host (2007). The most common host species for aquatic mites was Culex erraticus, while the most common host for terrestrial mites was Anopheles quadrimaculatus. Relationships between biotic and abiotic factors were investigated in an attempt to provide insight into temporal, spatial, and interspecific variation in mite–mosquito interactions. Scanning electron microscopy was used to examine the mode of attachment for larval mites. While the prevalence of aquatic mite parasitism was correlated for Culex erraticus, the invasive mosquito, Aedes albopictus, was never parasitized through the duration of the study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Large tracts of lowland and foothill landscape in the bimodal rainfall, eastern Fynbos Biome of South Africa lack an overstorey of nonsprouting, serotinous Proteaceae (proteoids). Scattered stands of proteoids in the grassy fynbos that dominate these landscapes suggest that proteoids have the potential to be more widespread. Here, we assessed whether interactions between the resprouting graminoid (predominantly C4 grasses) understorey and the proteoid overstorey could explain the sparseness of proteoids in grassy fynbos. We quantified postfire seedling growth and graminoid cover for three proteoid (Protea) species in beneath‐proteoid canopy and open microsites at sixteen locations in the eastern Fynbos Biome. Contrary to studies undertaken in proteoid fynbos west of our study area, we found no consistent differences between graminoid cover and growth of proteoid seedlings in beneath‐canopy and open microsites. Nor did we find consistent negative relationships between graminoid cover and seedling growth. We conclude that graminoid–proteoid interactions do not explain the sparseness of proteoids in the eastern Fynbos Biome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号