首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four hundred and forty-two serogroup C Neisseria meningitidis isolates from individual invasive meningococcal disease (IMD) patients in Canada during the period 1999 to 2003 were analyzed. The majority (84%) of the serogroup C meningococci were characterized by the serotype antigen 2a and belonged to the clonal complex of electrophoretic type ET-15. However, after more than a decade of endemic disease as well as a number of outbreaks and many vaccination campaigns, both genetic and antigenic variants of the serogroup C serotype 2a meningococci were noted. Such variants include strains characterized as C:2a:P1.5 and C:2a:P1.7,1 as well as a non-serotypeable phenotype due to a mutational hot spot on the serotype 2a PorB outer-membrane protein. Meningococci characterized by the antigen formula B:2a:P1.5,2 and B:2a:P1.7,1 have also been found, which suggests capsule switching. Besides the clonal group of ET-15/ET-37, small numbers of serogroup C isolates were found to belong to the clonal complexes of ST-8 (Cluster A4), ST-41/44 (Lineage 3), ST-35, and ST-269.  相似文献   

2.
Meningococcal disease remains a public health burden in the UK and elsewhere. Invasive Neisseria meningitidis, isolated in Scotland between 1972 and 1998, were characterised retrospectively to examine the serogroup and clonal structure of the circulating population. 2607 isolates causing invasive disease were available for serogroup and MLST analysis whilst 2517 were available for multilocus sequence typing (MLST) analysis only. Serogroup distribution changed from year to year but serogroups B and C were dominant throughout. Serogroup B was dominant throughout the 1970s and early 1980s until serogroup C became dominant during the mid-1980s. The increase in serogroup C was not associated with one particular sequence type (ST) but was associated with a number of STs, including ST-8, ST-11, ST-206 and ST-334. This is in contrast to the increase in serogroup C disease seen in the 1990s that was due to expansion of the ST-11 clonal complex. While there was considerable diversity among the isolates (309 different STs among the 2607 isolates), a large proportion of isolates (59.9%) were associated with only 10 STs. These data highlight meningococcal diversity over time and the need for ongoing surveillance during the introduction of new meningococcal vaccines.  相似文献   

3.

Background

In order to inform meningococcal disease prevention strategies, we analysed the epidemiology of invasive meningococcal disease (IMD) in the province of Quebec, Canada, 10 years before and 10 years after the introduction of serogroup C conjugate vaccination.

Methodology

IMD cases reported to the provincial notifiable disease registry in 1991–2011 and isolates submitted for laboratory surveillance in 1997–2011 were analysed. Serogrouping, PCR testing and assignment of isolates to sequence types (ST) by using multilocus sequence typing (MLST) were performed.

Results

Yearly overall IMD incidence rates ranged from 2.2–2.3/100,000 in 1991–1992 to 0.49/100,000 in 1999–2000, increasing to 1.04/100,000 in 2011. Among the 945 IMD cases identified by laboratory surveillance in 1997–2011, 68%, 20%, 8%, and 3% were due to serogroups B, C, Y, and W135, respectively. Serogroup C IMD almost disappeared following the implementation of universal childhood immunization with monovalent C conjugate vaccines in 2002. Serogroup B has been responsible for 88% of all IMD cases and 61% of all IMD deaths over the last 3 years. The number and proportion of ST-269 clonal complex has been steadily increasing among the identified clonal complexes of serogroup B IMD since its first identification in 2003, representing 65% of serogroup B IMD in 2011. This clonal complex was first introduced in adolescent and young adults, then spread to other age groups.

Conclusion

Important changes in the epidemiology of IMD have been observed in Quebec during the last two decades. Serogroup C has been virtually eliminated. In recent years, most cases have been caused by the serogroup B ST-269 clonal complex. Although overall burden of IMD is low, the use of a vaccine with potential broad-spectrum coverage could further reduce the burden of disease. Acceptability, feasibility and cost-effectiveness studies coupled with ongoing clinical and molecular surveillance are necessary in guiding public policy decisions.  相似文献   

4.
We analyzed 48 invasive isolates of Neisseria meningitidis that were isolated from meningitis cases in Burkina Faso (April 2002 to April 2003). Thirty-nine of these isolates had the phenotype (serogroup:serotype:serosubtype) W135:2a:P1.5,2, eight isolates were A:4:P1.9 and one isolate was nongroupable:nonserotypable:nonserosubtypable. Genotyping of meningococcal isolates showed that W135 isolates belonged to the sequence type (ST)-11. The nongroupable isolate was of genogroup W135 and belonged to ST-192. Isolates of serogroup A belonged to ST-2859 (a member of the subgroup III/ST-5 clonal complex). W135 (ST-11) isolates involved in meningitis outbreaks in Burkina Faso differed from those involved in the Hajj-2000 associated outbreak by their pulsed-field gel electrophoresis profile. These data confirm the changing epidemiology of meningococcal infection in Burkina Faso with the establishment and expansion of serogroup W135 N. meningitidis strains of the ET-37/ST-11 clonal complex, as well as the emergence of a new clone within the subgroup III/ST-5 clonal complex.  相似文献   

5.
Capsule switching in Neisseria meningitidis is thought to occur by horizontal DNA exchange between meningococcal strains. Antigenic variants may be generated by allelic replacement of the siaD gene; the variants may then be selected by specific immunity against the capsular antigen. There were several vaccination campaigns against serogroup C in France in 2002, following an increase in the prevalence of invasive isolates of serogroup C of the phenotype C:2a:P1.5 and C:2a:P1.5,2 belonging to the ET-37/ST-11 clonal complex. We evaluated the emergence of capsule variants by the detection of B:2a:P1.5 and B:2a:P1.5,2 meningococcal isolates of the ET-37/ST-11 clonal complex. These isolates were significantly more frequent after the year 2002. Pulsed field gel electrophoresis profiles of the serogroup B (ET-37/ST-11) isolates differed from that of serogroup C (ET-37/ST-11) isolates by the bands that harbor the siaD genes responsible for the serogroup specificity. However, serogroup B and C, ET37/ST-11 isolates both express similar virulence as assessed from colonization and invasiveness in a mouse model. Our results indicate that capsule switching events within the same clonal complex can arise frequently with no alteration in virulence. This justifies an enhanced system of surveillance by molecular typing of such isolates, particularly after serogroup-specific vaccination.  相似文献   

6.

Background

The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries.

Methodology

All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection.

Principal Findings

Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction.

Conclusions

In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain.  相似文献   

7.
BackgroundFollowing the introduction of meningococcal serogroup C conjugate vaccine in Italy in 2005, changes in the epidemiology of Invasive Meningococcal Disease (IMD) were expected. The study aims were to describe the epidemiological trend and to characterize the isolates collected during the period 2008/09-2012/13 by multilocus sequence typing (MLST). Data on laboratory confirmed meningococcal diseases from National Surveillance System of IMD were reported.MethodsPoisson regression models were used to estimate the incidence rate over time. Serogrouping and MLST were performed following published methods.ResultsThe incidence rate of laboratory confirmed meningococcal disease decreased from 0.33 per 100,000 population in 2008/09 to 0.25 per 100,000 population in 2012/13. The serogroup B incidence rate was significantly higher (p<0.01) than that of other serogroups, among all age groups. The significant decrease of the IMD incidence rate (p = 0.01) reflects the decrease of serogroup B and C, in particular among individuals aged 15–24 years old (p<0.01). On the other hand, serogroup Y incidence increased during the period (from 0.01/100,000 in 2008/09 to 0.02/100,000 in 2012/13, p = 0.05). Molecular characterizations revealed that ST–41/44 cc and ST–11 cc were the main clonal complexes identified among serogroup B and C isolates, respectively. In particular, ST–41/44 cc was predominant in all age groups, whereas ST–11 cc was not identified in infants less than 1 year of age.ConclusionsIMD incidence declined in Italy and serogroup B caused most of the IMD cases, with infants having the highest risk of disease. Continued surveillance is needed to provide information concerning further changes in circulating meningococci with special regard to serogroup distribution. Moreover, knowledge of meningococcal genotypes is essential to detect hyper-invasive strains.  相似文献   

8.

Background

Invasive meningococcal disease (IMD) is a major cause of bacterial meningitides and septicaemia. This study shows the results of the laboratory-based surveillance of IMD in Belgium over the period 1997–2012.

Methods

The results are based on microbiological and molecular laboratory surveillance of 2997 clinical isolates of N. meningitides received by the Belgian Meningococcal Reference Centre (BMRC) over the period 1997–2012.

Results

Serogroup B has always been a major cause of meningococcal disease in Belgium, with P3.4 as most frequent serotype till 2008, while an increase in non-serotypable strains has been observed in the last few years. Clonal complexes cc-41/44 and cc-269 are most frequently observed in serogroup B strains. In the late nineties, the incidence of serogroup C disease increased considerably and peaked in 2001, mainly associated with phenotypes C:2a:P1.5,2, C:2a:P1.5 and C:2a:P1.2 (ST-11/ET-37 clonal complex). The introduction of the meningococcal C conjugate vaccine has been followed by an 88% significant decrease in serogroup C disease from 2001 to 2004 nationally, yet sharper in Flanders (92%) compared to Wallonia (77%). Since 2008 a difference in incidence of serogroup C was observed in Flanders (0–0.1/100,000) versus Wallonia (0.1–0.3/100,000).

Conclusion

This study showed the change in epidemiology and strain population over a 16 years period spanning an exhaustive vaccination campaign and highlights the influence of regional vaccination policies with different cohorts sizes on short and long-term IMD incidences.  相似文献   

9.
Aims:  To determine the antimicrobial resistant profiles and clonality of Campylobacter coli isolated from clinically ill humans and retail meats.
Methods and Results:  A total of 98 C. coli isolates (20 from humans and 78 from retail meats) were phenotypically characterized. Antimicrobial susceptibility testing was done using agar dilution method for ciprofloxacin, gentamicin, erythromycin and doxycycline. Seventy C. coli isolates including humans ( n  = 20) and retail meats ( n  = 50) were genotyped by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Resistance to ciprofloxacin was found in 29% and 15% of isolates from retail meats and humans. We observed 61 PFGE profiles using two enzymes ( Sma I, Kpn I) with an Index of discrimination of 0·99, whereas MLST generated 37 sequence types. Two clonal complexes were identified with 58 (82%) C. coli isolates clustered in the ST-828 complex.
Conclusions:  Resistance to ciprofloxacin and erythromycin was identified in C. coli obtained from retail meats and ill humans. PFGE typing of C. coli isolates was more discriminatory than MLST. Grouping of C. coli isolates (82%) by MLST in ST-828 clonal complex indicates a common ancestry.
Significance and Impact of the Study:  A high frequency of resistance found to ciprofloxacin and erythromycin is concerning from food safety perspective. PFGE using single or double restriction enzymes was found to be more discriminatory than MLST for genotyping C. coli . Overall, the C. coli populations recovered from humans and retail meats were genotypically diverse.  相似文献   

10.
Phenotypic and genotypic characterization of 133 isolates of Neisseria meningitidis obtained from meningococcal disease cases in Argentina during 2010 were performed by the National Reference Laboratory as part of a project coordinated by the PAHO within the SIREVA II network. Serogroup, serotype, serosubtype and MLST characterization were performed. Minimum Inhibitory Concentration to penicillin, ampicillin, ceftriaxone, rifampin, chloramphenicol, tetracycline and ciprofloxacin were determined and interpreted according to CLSI guidelines. Almost 49% of isolates were W135, and two serotype:serosubtype combinations, W135∶2a:P1.5,2:ST-11 and W135∶2a:P1.2:ST-11 accounted for 78% of all W135 isolates. Serogroup B accounted for 42.1% of isolates, and was both phenotypically and genotypically diverse. Serogroup C isolates represented 5.3% of the dataset, and one isolate belonging to the ST-198 complex was non-groupable. Isolates belonged mainly to the ST-11 complex (48%) and to a lesser extent to the ST-865 (18%), ST-32 (9,8%) and the ST-35 complexes (9%). Intermediate resistance to penicillin and ampicillin was detected in 35.4% and 33.1% of isolates respectively. Two W135∶2a:P1.5,2:ST-11:ST-11 isolates presented resistance to ciprofloxacin associated with a mutation in the QRDR of gyrA gene Thr91-Ile. These data show serogroup W135 was the first cause of disease in Argentina in 2010, and was strongly associated with the W135∶2a:P1.5,2:ST-11 epidemic clone. Serogroup B was the second cause of disease and isolates belonging to this serogroup were phenotypically and genotypically diverse. The presence of isolates with intermediate resistance to penicillin and the presence of fluorquinolone-resistant isolates highlight the necessity and importance of maintaining and strengthening National Surveillance Programs.  相似文献   

11.
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.  相似文献   

12.
Antibiotic treatment prior to transport or admission to hospital has reduced the proportion of cases of invasive meningococcal disease (IMD) from which Neisseria meningitidis can be isolated by standard microbiological techniques. Identification of meningococci by polymerase chain reaction (PCR) was assessed in relation to microbiological diagnosis for cases over a 4-year period between 1998 and 2001. A screening assay for the IS1106 gene was used to detect meningococcal DNA and five additional assays for siaD and orf-2 genes were performed to determine the serogroup. PCR results were compared with results of bacteriological culture, other laboratory test results and clinical data. The sensitivity of the PCR assay for culture-confirmed cases was 98.5%. The specificity of the assay was 96% based on test results for patients from whom other bacteria were isolated, children with viral meningitis and afebrile negative controls. The siaD B/C/W-135 and Y as well as the orf-2 gene for serogroup A PCR assays were able to determine the serogroup for 75.2% of cases that were positive by PCR screening assay. When isolates from patients with IMD were tested by both agglutination and PCR, the results agreed in all cases. PCR is a useful tool for diagnosis of IMD when Gram stain and culture tests are negative due to antibiotic treatment prior to collection of samples for microbiological analyses.  相似文献   

13.

Background

Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of São Paulo (1988–2006) for study (n = 372).

Methods

We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA.

Results

In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the São Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1.

Conclusions

A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp.  相似文献   

14.
A suspicious meningococcal meningitis death case was reported to the Beijing CDC. The blood specimen was analyzed via multi-PCR and MLST. 6 isolates from close contacts were analyzed via PFGE and MLST. According to the results of the above analyses, the cause of this case was identified as a serogroup A Neisseria meningitidis, which, in terms of sequence typing, belonged the ST7 group.  相似文献   

15.
In many countries relatively high notification rates of campylobacteriosis are observed in children under 5 years of age. Few studies have considered the role that environmental exposure plays in the epidemiology of these cases. Wild birds inhabit parks and playgrounds and are recognized carriers of Campylobacter, and young children are at greater risk of ingesting infective material due to their frequent hand-mouth contact. We investigated wild-bird fecal contamination in playgrounds in parks in a New Zealand city. A total of 192 samples of fresh and dried fecal material were cultured to determine the presence of Campylobacter spp. Campylobacter jejuni isolates were also characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), and the profiles obtained were compared with those of human isolates. C. jejuni was isolated from 12.5% of the samples. MLST identified members of clonal complexes ST-45, ST-682, and ST-177; all of these complexes have been recovered from wild birds in Europe. PFGE of ST-45 isolates resulted in profiles indistinguishable from those of isolated obtained from human cases in New Zealand. Members of the ST-177 and ST-682 complexes have been found in starlings (Sturnus vulgaris) in the United Kingdom, and these birds were common in playgrounds investigated in New Zealand in this study. We suggest that feces from wild birds in playgrounds could contribute to the occurrence of campylobacteriosis in preschool children. Further, the C. jejuni isolates obtained in this study belonged to clonal complexes associated with wild-bird populations in the northern hemisphere and could have been introduced into New Zealand in imported wild garden birds in the 19th century.  相似文献   

16.
Several molecular typing schemes have been proposed to differentiate among isolates and clonal groups, and hence establish epidemiological or phylogenetic links. It has been widely accepted that multi-locus sequence typing (MLST) is the gold standard for phylogenetic typing/long-term epidemiological surveillance, but other recently described methods may be easier to carry out, especially in settings with limited access to DNA sequencing. Comparing the performance of such techniques to MLST is therefore of relevance. A study was therefore carried out with a collection of P. aeruginosa strains (n = 133) typed by four typing schemes: MLST, multiple-locus variable number tandem repeat analysis (MLVA), pulsed-field gel electrophoresis (PFGE) and the commercial DiversiLab microbial typing system (DL). The aim of this study was to compare the results of each typing method with MLST. The Simpson''s indices of diversity were 0.989, 0.980, 0.961 and 0.906 respectively for PFGE, MLVA, DL and MLST. The congruence between techniques was measured by the adjusted Wallace index (W): this coefficient indicates the probability that a pair of isolates which is assigned to the same type by one typing method is also typed as identical by the other. In this context, the congruence between techniques was recorded as follow: MLVA-type to predict MLST-type (93%), PFGE to MLST (92%), DL to MLST (64.2%), PFGE to MLVA (63.5%) and PFGE to DL (61.7%). Conversely, for all above combinations, prediction was very poor. The congruence was increased at the clonal complex (CC) level. MLST is regarded the gold standard for phylogenetic classification of bacteria, but is rather laborious to carry out in many settings. Our data suggest that MLVA can predict the MLST-type with high accuracy, and even higher when studying the clonal complex level. Of the studied three techniques MLVA was therefore the best surrogate method to predict MLST.  相似文献   

17.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

18.

Background

Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex.

Conclusion/Significance

LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS strains. Particularly, the presence of a clonal and putative neuropathogenic C. jejuni HS:23 serotype may contribute to the high prevalence of C. jejuni related GBS in Bangladesh.  相似文献   

19.
Multilocus sequence typing (MLST), an accurate and phylogenetically robust characterization method for population studies of Campylobacter, was applied to Campylobacter jejuni isolates (n = 297) from the fecal samples of cattle from five dairy farms in Cheshire, United Kingdom, collected throughout 2003. The population dynamics of the C. jejuni strains, as identified by the occurrence of sequence types and clonal complexes, demonstrated variations within and between cattle populations over time. Three clonal lineages have emerged to predominate among the cattle isolates, namely, the ST-61 complex (24.2%), ST-21 complex (23.6%), and ST-42 complex (20.5%). This provided further evidence that the ST-61 clonal complex may present a cattle-adapted C. jejuni genotype. In addition, the ST-42 clonal complex may also represent an important cattle-associated genotype. Strong geographical associations for these genotypes were also found among the farms. This is the first longitudinal study and the largest study to date for C. jejuni involving cattle populations using MLST for accurate strain characterization. This study shows the important associations between cattle and C. jejuni clonal complexes ST-61, ST-21, and ST-42, and it suggests that cattle and/or dairy products are likely to be a source of the human Campylobacter gastroenteritis caused by such genotypes. The reported findings have significant implications for the design of effective intervention strategies for disease control and prevention.  相似文献   

20.

Background

Meningococcal carriage studies are important to improve our understanding of the epidemiology of meningococcal disease. The aim of this study was to determine the prevalence of meningococcal carriage and the phenotypic and genotypic characteristics of isolates collected from a sample of students in the city of Bogotá, Colombia.

Materials and Methods

A total of 1459 oropharyngeal samples were collected from students aged 15–21 years attending secondary schools and universities. Swabs were plated on a Thayer Martin agar and N. meningitidis was identified by standard microbiology methods and PCR.

Results

The overall carriage prevalence was 6.85%. Carriage was associated with cohabitation with smokers, and oral sex practices. Non-groupable and serogroup Y isolates were the most common capsule types found. Isolates presented a high genetic diversity, and circulation of the hypervirulent clonal complexes ST-23, ST-32 and ST-41/44 were detected.

Conclusion

The meningococcal carriage rate was lower than those reported in Europe and Africa, but higher than in other Latin American countries. Our data also revealed antigenic and genetic diversity of the isolates and the circulation of strains belonging to clonal complexes commonly associated with meningococcal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号