首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The acidic ribosomal proteins of the protozoan parasites have been described as prominent antigens during human disease. We present here data showing the molecular cloning and protective efficacy of P1 gene of Leishmaniadonovani as DNA vaccine. The PCR amplified complete ORF cloned in either pQE or pVAX vector was used either as peptide or DNA vaccine against experimentally induced visceral leishmaniasis in hamsters. The recombinant protein rLdP1 was given along with Freund’s adjuvant and the plasmid DNA vaccine, pVAX-P1 was used alone either as single dose or double dose (prime and boost) in different groups of hamsters which were subsequently challenged with a virulent dose of 1 × 107L.donovani (MHOM/IN/DD8/1968 strain) promastigotes by intra-cardiac route. While the recombinant protein rLdP1 or DNA vaccine pVAX-P1 in single dose format were not found to be protective, DNA vaccine in a prime-boost mode was able to induce protection with reduced mortality, a significant (75.68%) decrease in splenic parasite burden and increased expression of Th1 type cytokines in immunized hamsters. Histopathology of livers and spleens from these animals showed formation of mature granulomas with compact arrangement of lymphocytes and histiocytes, indicating its protective potential as vaccine candidate.  相似文献   

3.

Background

Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice.

Methodology/Principal Findings

Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo.

Conclusion

Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL.  相似文献   

4.

Background  

The development of an effective vaccine against visceral leishmaniasis (VL) caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg) against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG) and Monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) with cationic liposomes, in combination with LAg, to confer protection against murine VL.  相似文献   

5.

Background

Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid marker for assessing vaccination status in a fish population. For this purpose a highly sensitive enzyme-linked immunosorbent assay (ELISA) was developed and used to evaluate sera from farmed rainbow trout vaccinated against V. anguillarum O1.

Study Design

Immune sera from rainbow trout immunised with an experimental vaccine based on inactivated V. anguillarum O1 bacterin in Freund’s incomplete adjuvant were used for ELISA optimisation. Subsequently, sera from farmed rainbow trout vaccinated with a commercial vaccine against V. anguillarum were analysed with the ELISA. The measured serum antibody levels were compared with the vaccine status of the fish (vaccinated/unvaccinated) as evaluated through visual examination.

Results

Repeated immunisation with the experimental vaccine lead to increasing levels of specific serum antibodies in the vaccinated rainbow trout. The farmed rainbow trout responded with high antibody levels to a single injection with the commercial vaccine. However, the diversity in responses was more pronounced in the farmed fish. Primary visual examinations for vaccine status in rainbow trout from the commercial farm revealed a large pool of unvaccinated specimens (vaccination failure rate = 20%) among the otherwise vaccinated fish. Through serum analyses using the ELISA in a blinded set-up it was possible to separate samples collected from the farmed rainbow trout into vaccinated and unvaccinated fish.

Conclusions

Much attention has been devoted to development of new and more effective vaccines. Here we present a case from a Danish rainbow trout farm indicating that attention should also be directed to the vaccination procedure in order to secure high vaccination frequencies necessary for optimal protection with a reported effective vaccine.  相似文献   

6.
In the last decade, the search for new vaccines against canine visceral leishmaniasis has intensified. However, the pattern related to immune protection during long periods after experimental infection in vaccine trials is still not fully understood. Herein, we investigated the immunogenicity and parasitological levels after intradermal challenge with Leishmania infantum plus salivary gland extract in dogs immunized with a vaccine composed of L. braziliensis antigens plus saponin as an adjuvant (LBSap vaccine). The LBSap vaccine elicited higher levels of total anti-Leishmania IgG as well as both IgG1 and IgG2. Furthermore, dogs vaccinated had increased levels of lymphocytes, particularly circulating B cells (CD21+) and both CD4+ and CD8+ T lymphocytes. LBSap also elicited an intense in vitro cell proliferation associated with higher levels of CD4+ T lymphocytes specific for vaccine soluble antigen and soluble lysate of L. infantum antigen even 885 days after experimental challenge. Furthermore, LBSap vaccinated dogs presented high IFN-γ and low IL-10 and TGF-β1 expression in spleen with significant reduction of parasite load in this tissue. Overall, our results validate the potential of LBSap vaccine to protect against L. infantum experimental infection and strongly support further evaluation of efficiency of LBSap against CVL in natural infection conditions.  相似文献   

7.
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.  相似文献   

8.
In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite-specific IgG2a antibodies. The polyproteins vaccine administration induced a more pronounced Th1 response before and after challenge infection than individual vaccines, which was correlated to a higher control of parasite dissemination to internal organs.  相似文献   

9.
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.  相似文献   

10.
Polytope approach of genetic immunization is a promising strategy for the prevention of infectious disease as it is capable of generating effective cell mediated immunity by delivering the T cell epitopes assembled in series. Leishmaniasis is a significant world wide health problem for which no vaccine exists. In this study we have compared immunogenicity and efficacy of three types of DNA vaccines: single antigen Gp63 (Gp63/pcDNA), polytope (Poly/pcDNA) and Polytope fused with hsp70 (Poly/hsp/pcDNA) against visceral leishmaniasis in susceptible BALB/c mice. Mice vaccinated with these plasmids generated strong Th1 immune response as seen by dominating IFN-γ over IL-10 cytokine. Interestingly, cytotoxic responses generated by polytope DNA plasmid fused with hsp70 of Leishmania donovani were significantly higher when compared to polytope and single antigen Gp63 vaccine. Challenge studies revealed that the parasite load in liver and spleen was significantly lower with Poly/hsp/pcDNA vaccination compared to other vaccines. Therefore, our study indicates that polytope DNA vaccine is a feasible, practical and effective approach for visceral leishmaniasis.  相似文献   

11.

Background

Most available drugs against visceral leishmaniasis are toxic, and growing limitations in available chemotherapeutic strategies due to emerging resistant strains and lack of an effective vaccine against visceral leishmaniasis deepens the crisis. Antineoplastic drugs like miltefosine have in the past been effective against the parasitic infections. An antineoplastic drug, cisplatin (cis-diamminedichloroplatinum II; CDDP), is recognized as a DNA-damaging drug which also induces alteration of cell-cycle in both promastigotes and amastigotes leading to cell death. First in vivo reports from our laboratory revealed the leishmanicidal potential of cisplatin. However, high doses of cisplatin produce impairment of kidney, which can be reduced by the administration of antioxidants.

Methodology/Principal Findings

The present study was designed to evaluate the antileishmanial effect of cisplatin at higher doses (5 mg and 2.5 mg/kg body weight) and its combination with different antioxidants (vitamin C, vitamin E and silibinin) so as to eliminate the parasite completely and reduce the toxicity. In addition, various immunological, hematological and biochemical changes induced by it in uninfected and Leishmania donovani infected BALB/c mice were investigated.

Conclusion/Significance

A significant reduction in parasite load, higher IgG2a and lower IgG1 levels, enhanced DTH responses, and greater concentration of Th1 cytokines (IFN-γ, IL-2) with a concomitant down regulation of IL-10 and IL-4 pointed towards the generation of the protective Th1 type of immune response. A combination of cisplatin with antioxidants resulted in successful reduction of nephrotoxicity by normalizing the enzymatic levels of various liver and kidney function tests. Reduction in parasite load, increase in Th1 type of immune responses, and normalization of various biochemical parameters occurred in animals treated with cisplatin in combination with various antioxidants as compared to those treated with the drug only. The above results are promising as antioxidants reduced the potential toxicity of high doses of cisplatin, making the combination a potential anti-leishmanial therapy, especially in resistant cases.  相似文献   

12.
Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9–97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.  相似文献   

13.
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.  相似文献   

14.
An experimental oil adjuvant vaccine was developed against haemorrhagic septicaemia, a disease of cattle and buffalo caused by Pasteurella multocida serotype B and E. Mineral oil, Mercol 52, was used as adjuvant together with Span 85 and Tween 85 as emulsifiers. The vaccine was evaluated by single dose intramuscular immunisation of 1–2 year old buffalo calves. IgG and IgM class antibodies were determined by ELISA. The group of animals immunised with the experimental oil adjuvant vaccine showed a high titre of the IgG class of antibodies measured at 300 days post vaccination. To compare the protective efficacy of the vaccine with the commonly used broth bacterin, another group of buffalo calves was immunised by broth bacterin. This group showed a low level of IgG antibodies. Protection was assessed by challenge with 109 viable bacteria of P. multocida type B:2,5 administered subcutaneously, 250 days post vaccination. Animals vaccinated with the experimental oil adjuvant vaccine were fully protected. The other groups of animals, vaccinated with broth bacterin or used as control (non-vaccinated), developed symptoms of haemorrhagic septicaemia. A strong relationship between IgG but not IgM class antibody level and resistance to challenge was observed. The experiment demonstrated that the experimental oil adjuvant vaccine was superior to broth bacterin in providing protection against experimental haemorrhagic septicaemia in young buffalo calves beyond 250 days.  相似文献   

15.

Background

In the absence of vaccines and limitations of currently available chemotherapy, development of safe and efficacious drugs is urgently needed for visceral leishmaniasis (VL) that is fatal, if left untreated. Earlier we reported in vitro apoptotic antileishmanial activity of n-hexane fractions of Artemisia annua leaves (AAL) and seeds (AAS) against Leishmania donovani. In the present study, we investigated the immunostimulatory and therapeutic efficacy of AAL and AAS.

Methodology/Principal Findings

Ten-weeks post infection, BALB/c mice were orally administered AAL and AAS for ten consecutive days. Significant reduction in hepatic (86.67% and 89.12%) and splenic (95.45% and 95.84%) parasite burden with decrease in spleen weight was observed. AAL and AAS treated mice induced the strongest DTH response, as well as three-fold decrease in IgG1 and two-fold increase in IgG2a levels, as compared to infected controls. Cytometric bead array further affirmed the elicitation of Th1 immune response as indicated by increased levels of IFN-γ, and low levels of Th2 cytokines (IL-4 and IL-10) in serum as well as in culture supernatant of lymphocytes from treated mice. Lymphoproliferative response, IFN-γ producing CD4+ and CD8+ T lymphocytes and nitrite levels were significantly enhanced upon antigen recall in vitro. The co-expression of CD80 and CD86 on macrophages was significantly augmented. CD8+ T cells exhibited CD62Llow and CD44hi phenotype, signifying induction of immunological memory in AAL and AAS treated groups. Serum enzyme markers were in the normal range indicating inertness against nephro- and hepato-toxicity.

Conclusions/Significance

Our results establish the two-prong antileishmanial efficacy of AAL and AAS for cure against L. donovani that is dependent on both the direct leishmanicidal action as well as switching-on of Th1-biased protective cell-mediated immunity with generation of memory. AAL and AAS could represent adjunct therapies for the treatment of leishmaniasis, either alone or in combination with other antileishmanial agents.  相似文献   

16.
Current drugs for the treatment of visceral leishmaniasis are inadequate and their efficacies are also compromised due to suppression of immune function associated during the course of infection. To overcome this problem, efforts are needed to develop therapies with effective immunomodulatory agents where decrease of parasitic burden and simultaneous enhancement of adaptive immunity can be achieved. In this study we have evaluated a new therapeutic approach based on combination of Asparagus racemosus, an immunomodulatory drug, in combination with cisplatin against Leishmania donovani infected BALB/c mice. We demonstrate that A. racemosus (650 mg/kg b.wt./day for 15 days, orally) in combination with cisplatin (5 mg/kg b.wt./day for 5 days, intraperitoneally) enhanced the clearance of parasites as determined by Giemsa-stained liver impression smears. Besides having better killing activity, this combination group achieved increased production of disease resolving Th-1 response (IFN-gamma, IL-2), heightened DTH (delayed type hypersensitivity) response and augmented levels of IgG2a. Moreover, A. racemosus in combination with cisplatin not only provided enhanced protective immune response but also resulted in remarkable improved kidney and liver function tests as manifested by normal levels of SGOT, SGPT, alkaline phosphatase, creatinine and urea in blood plasma with normal histological observations as compared to only cisplatin treated L. donovani infected BALB/c mice. Through this study we have ascertained that A. racemosus in combination with cisplatin in L. donovani infected BALB/c mice boosted as well as restored both cellular and humoral immunity. Thus in view of severe immunosuppression in visceral leishmaniasis, a better and effective strategy for optimum efficacy of future antileishmanial drugs would direct not only killing of parasite by the drug, but also simultaneous generation of immunity against the disease.  相似文献   

17.
Protection against leishmaniasis is depending upon generation of a Th1 type of immune response. Field trials of first generation Leishmania vaccine showed a limited efficacy even with multiple doses mainly due to lack of an appropriate adjuvant. In this study, susceptible BALB/c mice were immunized with rLmSTI1 encapsulated in liposomes to explore the extent of protection induced by Leishmania antigen encapsulated in the liposomes against challenge with Leishmania major. The results showed that s.c. immunization of BALB/c mice with liposomal rLmSTI1 induced a significant protection against challenge and a significant lower parasite burden in spleen up to 14 weeks after challenge. The protected animals showed a significantly smaller footpad thickness after challenge, and a higher level of anti-SLA IgG antibodies before and after challenge with a predominant IgG2a titer. The data supports the possibility of using liposomal Leishmania antigens as a vaccine.  相似文献   

18.
Roychoudhury J  Sinha R  Ali N 《PloS one》2011,6(3):e17376

Background

Resistance of Leishmania donovani to pentavalent antimonials, the first-line treatment of visceral leishmaniasis (VL), has become a critical issue worldwide. Second-line and new drugs are also not devoid of limitations. Suitable drug-delivery systems can improve the mode of administration and action of the existing antimonials, thus increasing their clinical life.

Methodology/Principal Findings

We investigated the efficacy of sodium stibogluconate (SSG) in phosphatidylcholine (PC)–stearylamine-bearing liposomes (PC-SA-SSG), PC-cholesterol liposomes (PC-Chol-SSG) and free amphotericin B (AmB) against SSG-resistant L. donovani strains in 8-wk infected BALB/c mice. Animals were sacrificed and parasites in liver, spleen and bone marrow were estimated 4-wk post-treatment by microscopic examination of stamp smears and limiting dilution assay. A set of PC-SA-SSG and AmB treated mice were further studied for protection against reinfection. Serum antibodies and cytokine profiles of ex-vivo cultured splenocytes were determined by ELISA. Uptake of free and liposomal SSG in intracellular amastigotes was determined by atomic absorption spectroscopy. Rhodamine 123 and 5-carboxyfluorescein, known substrates of Pgp and MRP transporter proteins, respectively, were used in free and liposomal forms for efflux studies to estimate intracellular drug retention. Unlike free and PC-Chol-SSG, PC-SA-SSG was effective in curing mice infected with two differentially originated SSG-unresponsive parasite strains at significantly higher levels than AmB. Successful therapy correlated with complete suppression of disease-promoting IL-10 and TGF-β, upregulation of Th1 cytokines and expression of macrophage microbicidal NO. Cure due to elevated accumulation of SSG in intracellular parasites, irrespective of SSG-resistance, occurs as a result of increased drug retention and improved therapy when administered as PC-SA-SSG versus free SSG.

Conclusions/Significance

The design of this single-dose combination therapy with PC-SA-SSG for VL, having reduced toxicity and long-term efficacy, irrespective of SSG-sensitivity may prove promising, not only to overcome SSG-resistance in Leishmania, but also for drugs with similar resistance-related problems in other diseases.  相似文献   

19.
20.
BackgroundWith the paucity of new drugs and HIV co-infection, vaccination remains an unmet research priority to combat visceral leishmaniasis (VL) requiring strong cellular immunity. Protein vaccination often suffers from low immunogenicity and poor generation of memory T cells for long-lasting protection. Cysteine proteases (CPs) are immunogenic proteins and key mediators of cellular functions in Leishmania. Here, we evaluated the vaccine efficacies of CPs against VL, using cationic liposomes with Toll like receptor agonists for stimulating host immunity against L. donovani in a hamster model.Conclusion/SignificanceThe present study is the first report of a comparative efficacy of leishmanial CPs and their cocktail using liposomal formulation with MPL-TDM against L. donovani. The level of protection attained has not been reported for any other subcutaneous single or polyprotein vaccination against VL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号