首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of testectomy and subsequent administration of testosterone propionate on the activity of the alkaline proteinases in rat skeletal muscle were investigated. Castration of the mature rat was followed by a short-term delay in protein accretion in skeletal muscle tissue as measured by the protein/DNA ratio and was paralleled by a 2–3 fold increase in specific activity of the alkaline proteinase(s). This increase of proteolytic activity was equally significant when expressed relative to μg DNA. Although the gain in body weight was significantly lower in the castrated rats, nevertheless the protein/DNA ratio in muscle after 6 weeks approximated the values of sham-operated control rats without normalization of the proteolytic activity.Treatment of the castrated rats with testosterone propoinate resulted in restoring normal levels of previously elevated levels of alkaline proteolytic activity in muscle tissue. The normalization of enzyme activity as well as protein accretion in muscle was dose-dependent. Treatment of the rats with a low dose (0.1 mg/day) of testosterone propionate failed to restore the proteolytic activity, but led to a small increase of the protein/DNA ratio as well as to a progressive increase in body weight. These data indicate a regulatory role of testosterone in the adaptive behaviour of the alkaline proteolytic system in rat skeletal muscle.  相似文献   

2.
Hutber, C. Adrian, B. B. Rasmussen, and W. W. Winder.Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise. J. Appl.Physiol. 83(6): 1917-1922, 1997.Musclemalonyl-CoA has been postulated to regulate fatty acid metabolism byinhibiting carnitine palmitoyltransferase 1. In nontrained rats,malonyl-CoA decreases in working muscle during exercise. Endurancetraining is known to increase a muscle's reliance on fatty acids as asubstrate. This study was designed to investigate whether the declinein malonyl-CoA with exercise would be greater in trained than innontrained muscle, thereby allowing increased fatty acid oxidation.After 6-10 wk of endurance training (2 h/day) or treadmillhabituation (5-10 min/day), rats were killed at rest or afterrunning up a 15% grade at 21 m/min for 5, 20, or 60 min. Trainingattenuated the exercise-induced drop in malonyl-CoA and prevented theexercise-induced increase in the constant for citrate activation ofacetyl-CoA carboxylase in the red quadriceps muscle of rats run for 20 and 60 min. Hence, contrary to expectations, the decrease inmalonyl-CoA was less in trained than in nontrained muscle during asingle bout of prolonged submaximal exercise.

  相似文献   

3.
4.
The sphingomyelin signalling pathway has been shown to function in different skeletal muscle types. The aim of the present study was to examine the effect of endurance training on the functioning of the pathway in the muscles. The experiments were carried out on two groups of male Wistar rats: sedentary and trained for six weeks. 24h after cessation of the training rats were anaesthetized and samples of the soleus, red and white section of the gastrocnemius were taken. The content and composition of sphingomyelin-fatty acids and ceramide - fatty acids was determined by means of gas-liquid chromatography. The content of sphingosine and sphinganine was determined by means of high-pressure liquid chromatography. The activity of neutral Mg(++)-dependent sphingomyelinase was determined spectophotometrically using trinitrophenylaminolauroyl-sphingomyelin as the substrate. It has been found that training reduces the total content of sphingomyelin- and ceramide-fatty acids, increases the content of sphinganine and does not affect the content of sphingosine in individual muscle types. The activity of the enzyme in the muscles is also elevated. It is concluded that training affects functioning of the sphingomyelin -signalling pathway in skeletal muscles. The reduction in the content of ceramide may contribute to elevation in glucose uptake in skeletal muscles observed after training.  相似文献   

5.
Leptin acutely stimulates skeletal muscle fatty acid (FA) metabolism in lean rodents and humans. This stimulatory effect is eliminated following the feeding of high-fat diets in rodents as well as in obese humans. The mechanism(s) responsible for the development of skeletal muscle leptin resistance is unknown; however, a role for increased suppressor of cytokine signaling-3 (SOCS3) inhibition of the leptin receptor has been demonstrated in other rodent tissues. Furthermore, whether exercise intervention is an effective strategy to prevent or attenuate the development of skeletal muscle leptin resistance has not been investigated. Toward this end, 48 Sprague-Dawley rats (175-190 g; approximately 2-3 mo of age) were fed control or high-fat (60% kcal) diets for 4 wk and either remained sedentary or were treadmill trained. In control diet-fed animals that remained sedentary (CS) or were endurance trained (CT), leptin stimulated FA oxidation (CS +32 +/- 15%, CT +30 +/- 17%; P < 0.05), suppressed triacylglycerol (TAG) esterification (CS -17 +/- 7%, CT -24 +/- 8%; P < 0.05), and reduced the esterification-to-oxidation ratio (CS -19 +/- 13%, CT -29 +/- 10%; P < 0.001) in soleus muscle. High-fat feeding induced leptin resistance in the soleus of sedentary rats (FS), whereas endurance exercise training (FT) restored the ability of leptin to suppress TAG esterification (-19 +/- 9%, P = 0.038). Training did not completely restore the ability of leptin to stimulate FA oxidation. High-fat diets stimulated SOCS3 mRNA expression irrespective of training status (FS +451 +/- 120%, P = 0.024; FT +381 +/- 141%, P = 0.023). Thus the development of skeletal muscle leptin resistance appears to involve an increase in SOCS3 mRNA expression. Endurance training was generally effective in preventing the development of leptin resistance, although this did not appear to require a decrease in SOCS3 expression. Future studies should examine changes in the actual protein content of SOCS3 in muscle and establish whether aerobic exercise is also effective in treating leptin resistance in humans.  相似文献   

6.

Background  

Whether or not isolated endurance training of the respiratory muscles improves whole-body endurance exercise performance is controversial, with some studies reporting enhancements of 50 % or more, and others reporting no change. Twenty fit (VO2 max 56.0 ml/kg/min), experienced cyclists were randomly assigned to three groups. The experimental group (n = 10) trained their respiratory muscles via 20, 45 min sessions of hyperpnea. The placebo group (n = 4) underwent "sham" training (20, 5 min sessions), and the control group (n = 6) did no training.  相似文献   

7.
The reaction product of acetylcholinesterase (AChE) activity is known to be specifically localized at a neuromuscular junction and a muscle-tendon junction of the striated skeletal muscles. In addition to the two junctions, we recently found some linear precipitates due to AChE activity running transversely across a fibre of the semitendinosus, rectus abdominis, gastrocnemius, tibialis anterior and diaphragm muscles in mice. Under an electron microscope, the linear precipitates were seen at the extracellular side of the muscle fibre endings. Most of the endings contacted each other to form a junction, which has been called the 'myomyous junction (M-Mj)'. The patterns of the M-Mj were grouped into three types: (1) a junction in which all contacts were firm, without any connective tissue, and invaginated deeply; (2) the ones in which numerous collagen fibres were visible in the space between the two separate opposing muscle fibres; (3) an intermediate type between (1) and (2), i.e. a junction with partial contacts. The muscle fibre ending forming M-Mj was constructed of finger-like processes like that of a muscle-tendon junction. However, the processes of a M-Mj adhered so closely to each other that no collagen fibrils could penetrate into their folds.  相似文献   

8.
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men (n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher (P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold (P < 0.05) in response to exercise before the training period, but only 8-fold (P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 (P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.  相似文献   

9.
The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T(1), n = 8) or 48 h (T(48), n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T(1); 18% increase in T(48), P < 0.05) and ventricle muscles (23% increase in T(1); 17% increase in T(48), P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T(1) and T(48) groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T(1) vs. T(48) groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.  相似文献   

10.
To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.  相似文献   

11.
The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max).  相似文献   

12.
13.
14.
Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly (P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly (P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest (P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential (P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher (P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca(2+)-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.  相似文献   

15.
16.
To generate temporally controlled targeted somatic mutations selectively and efficiently in skeletal muscles, we established a transgenic HSA-Cre-ER(T2) mouse line in which the expression of the tamoxifen-dependent Cre-ER(T2) recombinase is under the control of a large genomic DNA segment of the human skeletal muscle alpha-actin gene, contained in a P1-derived artificial chromosome. In this transgenic line Cre-ER(T2) is selectively expressed in skeletal muscles, and Cre-ER(T2)-mediated alteration of LoxP flanked (floxed) target genes is skeletal muscle-specific and strictly tamoxifen-dependent. HSA-Cre-ER(T2) mice should be of great value to analyze gene function in skeletal muscles, and to establish animal models of human skeletal muscle disorders.  相似文献   

17.
Male NMRI-mice were subjected to exhaustive treadmill exercise. 3 and 6 days after the exertion, quadriceps femoris muscles were examined histologically and analyzed for acid hydrolases in order to follow the degree and progress of injuries. Prednisolone (PRED), an anti-inflammatory corticosteroid, was given to some of the animals in order to modify the exercise response. The PRED administration began 14 h before exercise and continued until the end of the experiment (6 days). The doses were 25 and 50 mg . kg-1 i.p. twice a day. The activities of both arylsulphatase and beta-glucuronidase increased significantly in the exercise control group after 3 and 6 days. The increase in activity correlated with fibre necrosis and an abundant infiltration of inflammatory cells, and was greatest after 3 days. After 6 days the inflammatory response decreased and regenerating muscle fibres were seen. PRED decreased the exercise-induced acid hydrolase response. The decrease was most prominent after 3 days with PRED 50 mg . kg-1 . day-1. PRED also diminished degeneration and inflammation. The results suggest that the decrease in acid hydrolase activities was due to a lesser infiltration of inflammatory cells to the injured area.  相似文献   

18.
19.
20.
Alkaline proteinase (chymase) was localized in skeletal muscle tissues from seven day streptozotocin-diabetic rats. Extruded mast cell granules containing proteinase were visible in the extracellular space and inside certain myofibers from both extensor digitorum longus (EDL) and soleus muscles. Additional diffuse staining was present in the cytoplasm of many EDL fibers. This evidence provides support for a possible role of muscle cells in the endocytosis of mast cell granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号