首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

2.
Summary The activity of four lysosomal proteases in soleus and extensor digitorum longus muscles was studied in streptozotocin-induced diabetic rats using newly developed fluorescence histochemical and biochemical techniques. The results indicate that the content of lysosomal protease in skeletal muscle cells was decreased three weeks after the induction of diabetes. The reduction was most pronounced in the extensor digitorum longus for all the proteases tested, but in the soleus only cathepsin B and dipeptidyl peptidase II showed a decrease. Biochemical assays on total muscle homogenates and muscle extracts confirmed the histochemical observations that protease activity was significantly lower in diabetic muscles. This decrease in activity varied with the duration of diabetes beginning as early as 48 h for the soleus. In conclusion, myofibre-specific decreases in lysosomal proteases occur following diabetes.  相似文献   

3.
The action of two alkaline proteases from white skeletal muscle on myofibrillar proteins is shown. Purified myosin was readily degraded by both proteases, but only protease I was able to degrade myosin heavy chain from actomyosin. The effect of inhibitor on both proteases was also studied. The activity of protease II on azocasein was not affected, while the action of protease I on both azocasein and myosin was inhibited. The implication of proteases and inhibitor on the turnover of myofibrillar proteins is considered.  相似文献   

4.
Representative lysosomal enzyme activities were measured in muscles taken 0 h and 24 h after an acute exercise run that was completed without any overt signs of fatigue. The animals had progressed 2 and 4 weeks into a standard exercise program which typically produces adaptive changes in the working muscles. There was an increase in acetylglucosaminidase activity (12%) in the fast-twitch red muscle section of all animals that participated in the training program. This small increase may be representative of a delayed response found after more exhausting exercise. The single exercise bout, however, did not cause any acute change in lysosomal activity nor alter the partition of lysosomal enzymes between the "free" and particulate fractions. Thus, altered lysosomal enzyme activity does not appear to be a contributing influence that challenges muscle fiber homeostasis during moderately intense running.  相似文献   

5.
Saithe (Pollachius virens L.) were starved for 66 days at 10 degrees C and activities of aryl sulfatase, acid proteinase, beta-glucuronidase, RNAase and acid phosphatase measured in homogenates prepared from fast and slow myotomal muscles. In fed fish, hydrolase activities were generally higher in slow than fast muscles. With the exception of acid proteinase activity in slow muscle, the activities of all the lysosomal enzymes increased by 70 to 100% during starvation. In general, there was a proportionally larger increase in the hydrolase activities in fast than in slow muscle. In a second experiment, fish were starved for 74 days, and refed for up to 52 days. The increases in aryl sulfatase and acid proteinase activity produced in fast muscle with starvation were found to be rapidly reversed by refeeding. Lysosomal enzyme activities in fish sampled after 10 days refeeding were not significantly different from fed controls. Membrane fractions enriched in aryl sulfatase activity were prepared from the fast muscle of 66-day starved fish. These were capable of degrading both myosin heavy chains and actin to lower molecular weight peptides at acid (pH 5.0), but not at neutral pH. The results suggest a role for lysosomal enzymes in the breakdown of myofibrillar proteins during starvation.  相似文献   

6.
The effect of hind-limb immobilization on selected lysosomal enzyme activities was studied in rat hind-limb muscles composed primarily of type I, IIA, or IIB fibers. Following immobilization, acid protease and acid phosphatase both exhibited significant (P less than 0.05) increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.  相似文献   

7.
Levels of various protein fractions, (sarcoplasmic, myosin, actin, non-collagen and collagen) and the rate of their degradation by proteases were studied in phasic and tonic muscles of marine prawn, Penaeus indicus following acute (2 d) and chronic (15 d) exposure to sublethal concentration of phosphamidon. During exposure, greater decrease in sarcoplasmic protein fraction was observed in phasic muscle as compared to other myofibrillar proteins. But the sarcoplasmic protein content showed an elevation in tonic muscle. The changes in protein fractions were more pronounced during acute exposure than chronic exposure both in phasic and tonic muscles. These changes were correlated with the elevation of the acidic, neutral and basic protease activities during acute and chronic exposure. Free amino acids were increased during acute exposure, while they showed a significant decrease during chronic exposure in both the muscles. These results indicate that protein metabolism in both phasic and tonic muscles was significantly altered following phosphamidon exposure. These differential responses observed at acute and chronic exposure indicate the operation of compensatory mechanisms to mitigate the phosphamidon toxic stress.  相似文献   

8.
Extracellular and membrane-bound proteases from Bacillus subtilis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The esterase had a molecular weight of approximately 35,000. Amino-terminal amino acid sequences were determined, and the actions of a number of inhibitors were examined. Membrane vesicles contained bound forms of alkaline and neutral proteases and a group of previously undetected proteases (M proteases). Membrane-bound proteases were extracted with Triton X-100. Membrane-bound alkaline and neutral proteases were indistinguishable from the extracellular enzymes by the criteria of molecular weight, immunoprecipitation, and sensitivity to inhibitors. The M protease fraction accounted for approximately 7% of the total activity in Triton X-100 extracts of membrane vesicles. The M protease fraction was partially fractionated into four species (M1 through M4) by ion-exchange chromatography. Immunoprecipitation and sensitivity to inhibitors distinguished membrane-bound alkaline and neutral proteases from M proteases. In contrast to alkaline and neutral proteases, proteases M2 and M3 exhibited exopeptidase activity.  相似文献   

9.
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases.  相似文献   

10.
A transformable strain of Bacillus subtilis 6160, a derivative of B. subtilis 168, produces three kinds of casein hydrolytic enzymes (alkaline protease, neutral protease, and esterase) in a culture medium. B. natto IAM 1212 produces 15 to 20 times as much total proteolytic activity as does B. subtilis. Extracellular proteases produced by the two strains were separated into each enzyme fraction by diethylaminoethyl-Sephadex A-50 column chromatography. The difference in the total protease activities of extracellular proteases between the two strains was due to the amount of neutral protease. The ratios of neutral protease activity to alkaline protease activity (N/A) were 1.1 in B. subtilis 6160 and 13.0 in B. natto IAM 1212. Enzymological and immunological properties of alkaline protease and neutral protease obtained from the two strains were quite similar or identical, respectively. Specific activities measured by an immunological analysis of the two neutral proteases against casein were also equal. A genetic character of high protease productivity in B. natto IAM 1212 was transferred to B. subtilis 6160 by the deoxyribonucleic acid-mediated transformation. Among 73 transformants that acquired high protease productivity, 69 produced a higher amount of neutral protease and the ratios of N/A were changed to 15 to 60. Three other strains were transformed in the productivity of neutral protease and alpha-amylase simultaneously, and one showed considerable change in the production of alkaline protease and neutral protease. The specific activities (casein hydrolytic activities/enzyme molecules) of neutral proteases from the representative four transformants were equal to those of the two parental strains. These results suggested the presence of a specific gene(s) that participated in the productivity of neutral protease in B. subtilis.  相似文献   

11.
In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70 degrees C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes.  相似文献   

12.
The number and approximate molecular weights of extracellular alkaline proteases produced by Vibrio alginolyticus were determined by gelatin-PAGE. Three major bands of protease activity with apparent molecular weights of approximately 28 000, 22 500 and 19 500 (proteases 1, 2 and 3, respectively) and two minor bands of protease activity with apparent molecular weights of approximately 15 500 and 14 500 (proteases 4 and 5, respectively) were obtained after gelatin-PAGE. The activities of the five proteases were inhibited by serine protease inhibitors but their activities were not affected by inhibitors of trypsin-like enzymes. Histidine, which inhibited V. alginolyticus collagenase, did not inhibit the activities of the alkaline serine proteases. The production of protease 1, however, was enhanced by histidine. Protease 1 production was also affected by temperature and production was depressed at 37 degrees C. Gelatin-PAGE of a commercial V. alginolyticus collagenase preparation revealed four bands of activity which were identified as collagenases with apparent molecular weights of approximately 45 000, 38 500, 33 500 and 31 000. The collagenase preparation was contaminated with two serine proteases. The release of [3H]proline from collagen matrices produced by smooth muscle cells was shown to be a sensitive assay for bacterial collagenases and was used to show that V. alginolyticus produced a basal constitutive level of extracellular collagenase. The constitutive levels of collagenase were affected by aeration.  相似文献   

13.
1. Female Wistar rats were randomly assigned to control (C) or exercising (T) groups and subsequently portioned into 1, 3, 5 and 10 day T and C groups. The T groups completed a progressive endurance running program. Biochemical indices of adaptation were measured in cardiac muscle and in plantaris and soleus muscles of C and T animals after their last exercise bout. 2. In cardiac muscle, myofibrillar ATPase activity was significantly elevated in the 3T (0.241 +/- 0.031) and 5T (0.242 +/- 0.013) groups (P less than or equal to 0.05) compared to their respective controls (3C = 0.187 +/- 0.015 and 5C = 0.190 +/- 0.007). 3. After 10 days of training cardiac myofibrillar ATPase activity was elevated by 17% but this was not significant (P greater than or equal to 0.05). 4. No changes in myofibrillar ATPase activity were seen in skeletal muscle (P greater than or equal to 0.05), however, hexokinase activity progressively increased and was significantly elevated in the 3T, 5T and 10T soleus and plantaris muscles of rats over controls (P less than or equal to 0.05). 5. Minimal nonsignificant changes were noted in the hexokinase activity of the hearts of all T groups (P greater than or equal to 0.05). 6. These results indicate that metabolic adaptation of the heart and skeletal muscles takes place after as little as three training sessions. 7. Although the adaptation of the skeletal muscles continually progresses, the adaptation of the heart appears to be transitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We characterized the senescence-associated proteases of postharvest broccoli (Brassica oleracea L. var Green King) florets, using class-specific protease inhibitors and gelatin-polyacrylamide gel electrophoresis. Different classes of senescence-associated proteases in broccoli florets were partially characterized for the first time. Protease activity of broccoli florets was depressed by all the inhibitors and showed different inhibition curves during postharvest. The hydrolytic activity of metalloprotease (EC 3.4.24. - ) and serine protease (EC 3.4.21. - ) reached a maximum, 1 day after harvest (DAH), then decreased, while the hydrolytic activity of cysteine protease (EC 3.4.22. - ) and aspartic protease (EC 3.4.23. - ) increased throughout the postharvest senescence based on the calculated inhibition percentage of protease activity. The senescence-associated proteases were separated into seven endoprotease (EP) groups by gelatin-polyacryamide gel electrophoresis and classified into EP1 (metalloprotease), EP2 (metalloprotease and cysteine protease), EP3 (serine protease and aspartic protease), EP4, EP5, EP7 (cysteine protease), and EP6 (serine protease) based on the sensitivity of class-specific protease inhibitors. The proteases EP2, EP3, and EP4 were present throughout the postharvest stages. EP3 was the major EP at all times during senescence; EP4 intensity of activity increased after 2 DAH; EP6 and EP7 clearly increased after 4 DAH. Our results suggest that serine protease activity contributes to early stage (0-1 DAH) and late stage (4-5 DAH) of senescence; metalloprotease activity was involved in the early and intermediate stages (0-3 DAH) of senescence; and cysteine protease and aspartic protease activities participated in the whole process of broccoli senescence.  相似文献   

15.
An alkalophilic Bacillus sp., strain GX6638 (ATCC 53278), was isolated from soil and shown to produce a minimum of three alkaline proteases. The proteases were purified by ion-exchange chromatography and were distinguishable by their isoelectric point, molecular weight, and electrophoretic mobility. Two of the proteases, AS and HS, which exhibited the greatest alkaline and thermal stability, were characterized further. Protease HS had an apparent molecular weight of 36,000 and an isoelectric point of approximately 4.2, whereas protease AS had a molecular weight of 27,500 and an isoelectric point of 5.2. Both enzymes had optimal proteolytic activities over a broad pH range (pH 8 to 12) and exhibited temperature optima of 65 degrees C. Proteases HS and AS were further distinguished by their proteolytic activities, esterolytic activities, sensitivity to inhibitors, and their alkaline and thermal stability properties. Protease AS was extremely alkali stable, retaining 88% of initial activity at pH 12 over a 24-h incubation period at 25 degrees C; protease HS exhibited similar alkaline stability properties to pH 11. In addition, protease HS had exceptional thermal stability properties. At pH 9.5 (0.1 M CAPS buffer, 5 mM EDTA), the enzyme had a half-life of more than 200 min at 50 degrees C and 25 min at 60 degrees C. At pH above 9.5, protease HS readily lost enzymatic activity even in the presence of exogenously supplied Ca2+. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. The data presented here clearly indicate that these two alkaline proteases from Bacillus sp. strain GX6638 represent novel proteases that differ fundamentally from the proteases previously described for members of the genus Bacillus.  相似文献   

16.
中国大鲵消化系统13种器官的蛋白水解酶种类和活性分析   总被引:8,自引:0,他引:8  
蛋白水解对生命活动是必不可少的(Vassali et al., 1994),蛋白质的酶解修饰(Xu et al.,1999)、细胞的迁移、组织再生与修复、消化系统对食物中蛋白质的消化等均与蛋白水解酶有关(Baimbridge et al.,1992),许多病理过程也与蛋白水解酶功能失调有关(Teichert et al., 1989; Monard, 1988).因此开展大鲵消化系统各器官的蛋白水解酶种类和性质的研究,对了解大鲵消化系统各器官的功能、演化及大鲵的营养需求、食性、消化生理等是必要的.本文对大鲵消化系统各器官的蛋白水解酶特征进行了初步分析,现将结果报道如下.  相似文献   

17.
Protein oxidation and degradation during postmitotic senescence   总被引:5,自引:0,他引:5  
Oxidized and cross-linked proteinacious materials (lipofuscin, age pigments, ceroid, etc.) have long been known to accumulate in aging and in age-related diseases, and some studies have suggested that age-dependent inhibition of the proteasome and/or lysosomal proteases may contribute to this phenomenon. Cell culture studies trying to model these aging effects have almost all been performed with proliferating (divisionally competent) cell lines. There is little information on nondividing (postmitotic) cells; yet age-related accumulation of oxidized and cross-linked protein aggregates is most marked in postmitotic tissues such as brain, heart, and skeletal muscles. The present investigation was undertaken to test whether oxidized and cross-linked proteins generally accumulate in nondividing, IMR-90 and MRC-5, human cell lines, and whether such accumulation is associated with diminished proteolytic capacities. Since both protein oxidation and declining proteolytic activities might play major roles in the age-associated accumulation of intracellular oxidized materials, we tested for protein carbonyl formation, proteasomal activities, and lysosomal cathepsin activities. For these studies, confluent, postmitotic IMR-90 and MRC-5 fibroblasts (at various population doubling levels) were cultured under hyperoxic conditions to facilitate age-related oxidative senescence. Our results reveal marked decreases in the activity of both the proteasomal system and the lysosomal proteases during senescence of nondividing fibroblasts, but the peptidyl-glutamyl-hydrolyzing activity of the proteasome was particularly inhibited. This decline in proteolytic capacity was accompanied by an increased accumulation of oxidized proteins.  相似文献   

18.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

19.
Recently, a training program that includes perturbation of support surfaces has been shown to allow most active individuals with ACL injury who pass a screening examination to successfully return to high level activities. The purpose of this study was to identify the effect of this rehabilitation program on involved side muscle activation during walking in subjects with acute ACL rupture and to determine if the activation changes were coincident with improved function. Nine subjects with an acute, unilateral ACL injury or rupture of an ACL graft, who met the screening examination criteria, received ten sessions of rehabilitation that included perturbation training. Motion analysis of five self-paced walking trials were performed before and after training. Electromyographic (EMG) data were collected during stance. After training during walking, the vastus lateralis (VL) integral of activity increased, and relationships between muscles were significantly altered. During walking, VL activation variables were dependent on lateral hamstrings (LH) and/or the soleus (SOL) activation, while no relationships were found before training. Function improved after training, and all subjects returned to their pre-injury activities without experiencing instability. The relationships formed between muscles post-training suggests that perturbation training enhances dynamic knee stability by inducing a well-coordinated strategy among muscles that affect tibial translation.  相似文献   

20.
对海洋细菌QD80所产低温碱性蛋白酶进行了基因克隆和序列分析,对此酶的性质进行了初步研究.此酶基因开放阅读框架为1377bp,分子量为49.9kD.此序列上游-8bp处为该基因的SD序列,-10区和-35区分别有5′TAGAAT3′和5′TTGACC3′的保守序列.该酶最适pH为9.5,最适反应温度为30℃,在10℃酶活力仍能保持30%以上.该酶对氧化剂H2O2的抗氧化作用明显,浓度达到4gL时酶活仍保留85%.该蛋白酶的低温适应性和抗氧化特性将对其在低温洗涤领域的应用提供广泛的潜在应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号