首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l(-1). When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m(-1) and formed stable and compact emulsions with emulsifying activity of 69%.  相似文献   

3.
Biosurfactant production was studied by Bacillus licheniformis K51, B. subtilis 20B, B. subtilis R1 and Bacillus strain HS3 using molasses or cheese whey as a sole source of nutrition at 45 degrees C. The isolates were able to grow and produce biosurfactant under shaking as well as static conditions. Maximum biosurfactant production was achieved with molasses at 5.0-7.0% (w/v). The biosurfactant retained its surface-active properties after incubation at 80 degrees C at a wide range of pH values and salt concentrations for nine days. Oil displacement experiments in sand pack columns with crude oil showed 25-33% recovery of residual oil.  相似文献   

4.
Summary An isolate of Pseudomonas fluorescens, strain 378 was shown to produce a novel surface active compound (code name AP-6). The compound is unique in being a high molecular weight compound but has, in some aspects, properties of a low molecular weight surfactant. The product is extracellular and its formation appeared to be partly growth-associated. Using a semisynthetic medium, fermentor cultivations were performed in the pH range 6.8–8.4. The product yield was optimal at pH 8.0 and gave a final concentration of 210 times critical micelle dilution. At higher pH, specific growth rate, final biomass and product concentration decreased. It consists mainly of carbohydrates and protein, the molecular weight is 1×106 and the isoelectric point is pH 9.1.The surface tension of an aqueous solution reached 27 mN/m which is a very low value even compared to other surfactants of considerably lower size and the critical micelle concentration was less than 10 mg/l in 0.9% (w/v) NaCl. The kinetics of the adsorption process at the air-water interface was studied using the drop volume technique, and the reaction was found to be rapid, considering the size of the molecule. A concentration as low as 0.025 g/l reached a surface tension of 30 mN/m within 70 s.  相似文献   

5.
A hydrocarbon degrading and biosurfactant producing, strain DHT2, was isolated from oil-contaminated soil. The organism grew and produced biosurfactant when cultured in variety of substrates at salinities up to 6 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, alkanes and PAHs as carbon source across the wide range of temperature (30–45°C) and salinity (0–6%). Over the range evaluated, the salinity and temperature did not influence the degradation of hydrocarbon and biosurfactant productions. Isolate DHT2 was identified as Pseudomonas aeruginosa by analysis of 16S rRNA sequences (100% homology) and biochemical analysis. PCR and DNA hybridization studies revealed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by DHT2 during growth on both, water miscible and immiscible substrates, including PAH. The biosurfactants lowered the surface tension of medium from 54.9 to 30.2 dN/cm and formed a stable emulsion. The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as best substrate and toluene was the poorest. These findings further indicate that the isolate could be useful for bioremediation and bio-refining application in petroleum industry.  相似文献   

6.
Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively.  相似文献   

7.
Aims: Pseudomonas aeruginosa LBI (Industrial Biotechnology Laboratory) was isolated from hydrocarbon-contaminated soil as a potential producer of biosurfactant and evaluated for hydrocarbon biodegradation. The emulsifying power and stability of the product was assessed in the laboratory, simulating water contamination with benzene, toluene, kerosene, diesel oil and crude oil at various concentrations. Methods and Results: Bacteria were grown at 30°C and shaken at 200 rpm for 168 h, with three repetitions. Surface tension, pH and biosurfactant stability were observed in the cell-free broth after 168 h of incubation. The strain was able to produce biosurfactant and grow in all the carbon sources under study, except benzene and toluene. When cultivated in 30% (w/v) diesel oil, the strain produced the highest quantities (9·9 g l−1) of biosurfactant. The biosurfactant was capable of emulsifying all the hydrocarbons tested. Conclusion: The results from the present study demonstrate that Ps. aeruginosa LBI can grow in diesel oil, kerosene, crude oil and oil sludge and the biosurfactant produced has potential applications in the bioremediation of hydrocarbon-contaminated sites. Significance and Impact of the Study: Pseudomonas aeruginosa LBI or the biosurfactant it produces can be used in the bioremediation of environmental pollution induced by industrial discharge or accidental hydrocarbon spills.  相似文献   

8.
Biosurfactant production of eight Streptococcus thermophilus strains, isolated from heat exchanger plates in the downstream side of the regenerator section of pasteurizers in the dairy industry has been measured using axisymmetric drop shape analysis by profile (ADSA-P). Strains were grown in M17 broth with either lactose, saccharose or glucose added. After harvesting, cells were suspended in water or in 10 mm potassium phosphate buffer, pH 7.0, and suspension droplets were put on a piece of FEP-Teflon. Changes in droplet profile were analysed by ADSA-P to yield the surface tension decrease due to biosurfactant production as a function of time. Surface tension decreases larger than 8 mJ·m–2 were taken as indicative of biosurfactant production. Only five strains produced biosurfactants in water, solely when saccharose was added to the growth medium. In buffer, all strains produced biosurfactants and production was generally greater than in water. Also, most strains suspended in buffer produced maximally when saccharose was added to the growth medium, whereas one strain produced maximally in buffer upon the addition of glucose. Four strains suspended in buffer produced biosurfactants when glucose was added and only two strains when lactose was added. The possible role of these biosurfactants as anti-adhesives in the dairy industry and for the survival of these strains in natural systems is discussed.Correspondence to: H. J. Busscher  相似文献   

9.
麦角甾醇是由酵母菌产生的具有重要经济价值的代谢产物。为了提高酵母菌利用糖蜜发酵生产麦角甾醇的产量,通过响应面分析法优化了发酵培养基配方,并在5 L发酵罐对发酵过程pH控制和底物流加补料方式进行了优化。结果表明,利用优化后的发酵培养基,即糖蜜总糖40 g/L,KH2PO4 1 g/L,K2HPO4 1.86 g/L,CuSO4·5H2O 17.5 mg/L,FeSO4·7H2O 13.9 mg/L,MgSO4·5H2O 12.3 mg/L,玉米浆10 mL/L,麦角甾醇产量比优化前提高了29.5%;利用恒定pH控制策略,在5 L发酵罐进行分批发酵,使麦角甾醇产量提高了62.1%;进一步采用底物流加补料策略,使麦角甾醇产量达到1 953.85 mg/L,是分批发酵的3.2倍,而且麦角甾醇产率比分批发酵提高了42.7%。为酵母菌发酵糖蜜产麦角甾醇的产业化应用奠定了基础。  相似文献   

10.
11.
通过培养高山被孢霉利用糖蜜来发酵生产花生四烯酸(ARA),研究了不同甘蔗糖蜜预处理方法对ARA发酵生产的影响。研究表明:H2SO4法是最利于ARA发酵生产的糖蜜预处理方法。利用预处理的甘蔗糖蜜发酵生产ARA,通过单因素实验设计,确定了最优的培养条件,包括初始还原糖80 g/L,N源6 g/L,接种量20%,初始pH6.0和培养温度25℃,在此条件下发酵,干细胞质量、油脂含量、ARA产量和糖利用率分别达到28.5 g/L、11.7g/L、3.68 g/L和94.5%。  相似文献   

12.
Two strains of biosurfactant-producing bacteria, identified asPseudomonas aeruginosa, were isolated from injection water and crude oil-associated water in Venezuelan oil fields. Both biosurfactants resembled rhamnolipids and produced stable emulsions of heavy and extra-heavy crude oils, reducing the surface tension of water from 72 to 28 dynes/cm. Tenso-active properties of the biosurfactants were not affected by pH, temperature, salinity or Ca2+ or Mg2+ at concentrations in excess of those found in many oil reservoirs in Venezuela.  相似文献   

13.
Aim:  To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos.
Methods and Results:  A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0·01 g l−1). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0·2 g l−1, was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0·01 g l−1) by ChlD strain. The best degradation efficiency was observed at 0·1 g l−1 supplement of biosurfactant, as validated by GC and HPLC studies.
Conclusion:  The addition of biosurfactant at 0·1 g l−1 resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation.
Significance and Impact of the Study:  This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.  相似文献   

14.
Liu YP  Zheng P  Sun ZH  Ni Y  Dong JJ  Zhu LL 《Bioresource technology》2008,99(6):1736-1742
In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes.  相似文献   

15.
A strain of Bacillus subtilis was able to grow and produce a biosurfactant on 2% sucrose at 45°C. As a result of biosurfactant synthesis the surface tension of the medium was reduced from 68 dynes cm−1 to 28 dynes cm−1. The strain had the capacity to produce the biosurfactant at high NaCl concentrations (4%) and a wide range of pH (4.5–10.5). The biosurfactant retained its surface-active properties after heating at 100°C for 2 h and at different pH values (4.5–10.5). A maximum amount of biosurfactant was produced when urea or nitrate ions were supplied as nitrogen source. The use of the biosurfactant at high temperatures, acidic, alkaline and saline environments is discussed. As a result of its action, 62% of oil in a sand pack column could be recovered, indicating its potential application in microbiologically enhanced oil recovery. Received 28 March 1996/ Accepted in revised form 16 September 1996  相似文献   

16.
An acenaphthene-degrading bacterium putatively identified as Pseudomonas sp. strain KR3 and isolated from diesel-contaminated soil in Lagos, Nigeria was investigated for its degradative and biosurfactant production potentials on crude oil. Physicochemical analysis of the sampling site indicates gross pollution of the soil with high hydrocarbon content (2100 mg/kg) and detection of various heavy metals. The isolate grew luxuriantly on crude oil, engine oil and acenaphthene. It was resistant to septrin, amoxicillin and augmentin but was susceptible to pefloxacin, streptomycin and gentamycin. It was also resistant to elevated concentration of heavy metals such as 1–15 mM lead, nickel and molybdenum. On acenaphthene, the isolate exhibited specific growth rate and doubling time of 0.098 day?1 and 3.06 days, respectively. It degraded 62.44% (31.2 mg/l) and 91.78% (45.89 mg/l) of 50 mg/l acenaphthene within 12 and 21 days. On crude oil, the specific growth rate and doubling time were 0.375 day?1 and 1.85 days with corresponding percentage degradation of 33.01% (903.99 mg/l) and 87.79% (2403.71 mg/l) of crude oil (2738.16 mg/l) within 9 and 18 days. Gas chromatographic analysis of residual crude oil at the end of 18 days incubation showed significant reductions in the aliphatic, alicyclic and aromatic fractions with complete disappearance of benzene, propylbenzene, pristane, phytane, and nC18-octadecane fractions of the crude oil. The isolate produced growth-associated biosurfactant on crude oil with the highest emulsification index (E24) value of 72% ± 0.23 on Day 10 of incubation. The partially purified biosurfactant showed zero tolerance for salinity and had its optimal activity at 27°C and pH 2.0.  相似文献   

17.
Summary Ethanol concentration and the rate of ethanol production were substantially increased when soy flour was added to the inoculum medium, which saved 95% added soy flour compared to supplementing fermentation medium. 11.7% ethanol was obtained by supplementing inoculum medium with soy flour and the fermentation time was reduced by more than 15%.  相似文献   

18.
In Penicillium citreoviride strain 3114, dipicolinic acid (DPA) synthesis is inhibited by Ca++ ions and susceptible to catabolite repression, making it unsuitable for fermentation in sugarcane molasses. A mutant, 27133-dpa-Ca-14, was derived through stepwise mutation and selection to produce DPA in the presence of 1000 ppm Ca++ and also to be resistant to catabolite repression. With this mutant, higher product concentrations (36 g DPA/l) could be reached without prior removal of Ca++ from the molasses. The DPA yields increased by about four times (0.4 g DPA/g glucose consumed) and productivity by two and a half-times (3.0 g DPA/l.d) compared with that of the parent strain 3114. Higher product yields (0.58–0.59 g DPA/g glucose consumed) were obtained in a multiple stage fermentation system. DPA was recovered through sepration by ion exchange chromatography followed by concentration and crystallization.  相似文献   

19.
Summary Production of citric acid from beet molasses at a varying pH profile using cell recycle ofAspergillus niger was investigated. Best results in terms of citric acid concentration, yield, productivity and specific citric acid productivity were obtained with a substrate pH of 3.0.  相似文献   

20.
Whey permeate from dairy industry was hydrolyzed enzymatically to cleave its main carbon source, lactose, to glucose and galactose. The hydrolysis products were chosen as carbon sources for the production of poly-3-hydroxybutyric acid (PHB) by Pseudomonas hydrogenovora. In shaking flask experiments, the utilization of whey permeate as a cheap substrate was compared to the utilization of pure glucose and galactose for bacterial growth under balanced conditions as well as for the production of PHB under nitrogen limitation. After determination of the inhibition constant Ki for sodium valerate on biomass production (Ki=1.84 g/l), the biosynthesis of PHA co-polyesters containing 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) units from hydrolyzed whey permeate and valerate was investigated. The application of hydrolyzed whey permeate turned out to be advantageous compared with the utilization of pure sugars. Therefore, fermentation under controlled conditions in a bioreactor was performed with hydrolyzed whey permeate to obtain detailed kinetic data (maximum specific growth rate, mu max=0.291/h, maximum polymer concentration, 1.27 g/l PHB), values for molecular mass distribution (weight average molecular weight Mw=353.5 kDa, polydispersity index PDI=3.8) and thermo analytical data. The fermentation was repeated with co-feeding of valerate (maximum specific growth rate, mu(max)=0.201/h, maximum polymer concentration, 1.44 g/l poly-(3HB-co-21%-3HV), weight average molecular weight M(w)=299.2 kDa, polydispersity index PDI=4.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号