首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
沙冬青几种光合特性的季节性变化的研究(英)   总被引:5,自引:1,他引:5  
研究了沙冬青(Ammopiptanthusmongolicus(Maxim.)Chegf.)几种光合特性的季节性变化。在气温升高时,沙冬青净光合速率(Pn)、气孔导度(Gs)和气孔限制值(Ls)均呈现下降趋势,而胞间CO2浓度(Ci)却呈上升趋势。根据Farquhar和Sharkey提出的关于区分气孔限制的两个标准,结果表明Pn的下降可能是非气孔限制因素导致。研究还证明,Rubisco大亚基的相对含量以及光化学活性与Pn的季节性变化相关,表明CO2同化的季节性变化主要取决于上述两种因素的变化。  相似文献   

2.
Seasonal changes in the photosynthetic characteristics of Ammopiptanthus mongolicus (Maxim.) Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, the stomata conductance and stomatal limitation value tended to decline simultaneously, while the intercellular CO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of photosynthesis suggested by Farquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn, may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosynthetic rate, which may show that these two factors contribute primarily to the seasonal changes in CO2 assimilation.  相似文献   

3.
4.
5.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

6.
Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.  相似文献   

7.
Three populations of each of Lolium perenne and Lolium multiflorumwere grown at four temperatures at each of three light intensities.Concurrent studies were made on the response of leaf photosyntheticactivity and leaf structure of newly-expanded leaves of 7-weekold seedlings of each of the populations to the contrastinggrowth environments. Photochemical efficiencies, leaf conductances, photorespirationconstants and apparent activation energies for photosynthesiswere calculated for each population in each of the twelve growthenvironments. Photosynthetic rates at light saturation were expressed on thebasis of leaf area, of leaf volume and of leaf mesophyll tissuevolume. Photosynthetic rates were also measured under differentassay conditions. By expressing photosynthetic rates on a leaf volume basis, variationbetween populations and growth environments resulting from leafstructural changes were partially removed.  相似文献   

8.
The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0–0.5 and 0.5–2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59–3.31 and 1.28–6.27 for Q. serrata and 1.36–6.31 and 1.65–5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0–0.5 and 0.5–2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.  相似文献   

9.
以在上海自然条件下生长的瑚瑚树、女贞、孝顺竹和棕榈等四种常绿植物为材料,在春、夏、秋、冬四个季节测定了它们的叶片在不同温度时的光饱和光合速率;用CF1000荧光仪测定了叶片的初始光(Fo)、最大荧光(Fm)和可变荧光(Fv)等特征值.结果表明.瑚瑚树和女贞适应环境温度变化的能力较强,它们的光合最适温度(Topt)的变化范围比较大,在四季均保持较高的光合活力,光合量子效率和Fv/Fm值较高,而孝顺竹和棕榈适应环境温度变化的能力较差,只在春秋两季有较高的光合活力.这些差别和它们的自然分布有联系.  相似文献   

10.
Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO2 flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO2 throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of −7.2, −22.9, and 26.0 g C m−2 yr−1 in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEEsat) and the temperature sensitivity coefficient of ecosystem respiration (Reco) exhibited significant variations. The values of NEEsat were −2.6, −2.9, and −1.4 µmol CO2 m−2 s−1 in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and Reco, and the drought sensitivity of GPP was greater than that of Reco. The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.  相似文献   

11.
温带阔叶林中氮的保留机制:   总被引:2,自引:0,他引:2       下载免费PDF全文
 在过去的半个世纪中,森林生态系统物质能量流动模型的发展使得生态学者对矿物元素的来源、去处、转换速率及其干扰破坏的影响有了进一步的认识。其中“春坝”假设提出:在早春来临之际,林冠树木仍处于冬眠之时,林下地被植物先于林冠树木发芽开花,吸收土壤养分于植物体内,使得养分免于因雨水或雪水而造成的淋失而得以保留于森林生态系统中。本文对“春坝”假设的研究作一小结。现有的研究结果显示,早春地被植物对土壤氮的吸收量因不同生态系统而异;而土壤微生物对氮的吸收量远高于过去人们所认识的水平。早春地被物与土壤微生物都能在季节的变化中吸收土壤养分、共同起着“春坝”作用。两者所起作用大小因气候及生态系统的不同而有所改变。   相似文献   

12.
Microbial populations, their distributions, and their aquatic environments were studied over a year (1997) at an acid mine drainage (AMD) site at Iron Mountain, Calif. Populations were quantified by fluorescence in situ hybridizations with group-specific probes. Probes were used for the domains Eucarya, Bacteria, and Archaea and the two species most widely studied and implicated for their role in AMD production, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Results show that microbial populations, in relative proportions and absolute numbers, vary spatially and seasonally and correlate with geochemical and physical conditions (pH, temperature, conductivity, and rainfall). Bacterial populations were in the highest proportion (>95%) in January. Conversely, archaeal populations were in the highest proportion in July and September (~50%) and were virtually absent in the winter. Bacterial and archaeal populations correlated with conductivity and rainfall. High concentrations of dissolved solids, as reflected by high conductivity values (up to 125 mS/cm), occurred in the summer and correlated with high archaeal populations and proportionally lower bacterial populations. Eukaryotes were not detected in January, when total microbial cell numbers were lowest (<105 cells/ml), but eukaryotes increased at low-pH sites (~0.5) during the remainder of the year. This correlated with decreasing water temperatures (50 to 30°C; January to November) and increasing numbers of prokaryotes (108 to 109 cells/ml). T. ferrooxidans was in highest abundance (>30%) at moderate pHs and temperatures (~2.5 and 20°C) in sites that were peripheral to primary acid-generating sites and lowest (0 to 5%) at low-pH sites (pH ~0.5) that were in contact with the ore body. L. ferrooxidans was more widely distributed with respect to geochemical conditions (pH = 0 to 3; 20 to 50°C) but was more abundant at higher temperatures and lower pHs (~40°C; pH ~0.5) than T. ferrooxidans.  相似文献   

13.
实施森林分类经营导致土壤微生物生态的变化,是保护区生态环境监测的任务之一。结合甘肃天水小陇山土壤微生物多年调研资料,在总结针叶林和阔叶林下微生物群落特征的基础上,比较了阔叶林转化为针叶林后土壤微生物的动态。结果表明:1暖温带阔叶林土壤微生物数量和分布特征的生态幅较小,针叶林较大;2针阔林下土壤微生物群落优势菌属相同,但针叶林的优势属葡萄球菌属(Staphylococcus)及稀有菌属头孢霉属(Cephalosporium)在阔叶林未出现,阔叶林常见属交链孢霉属(Alternaria)在针叶林未出现;3暖温带阔叶林土壤微生物多样性指数均大于针叶林,针、阔叶林下功能菌群类型且其数量排序基本一致;4阔叶林转变为针叶林后,对不同时期土壤微生物群落的数量、分布、种属组成、多样性和功能菌群等特征的全面分析认为,土壤微生物逐步适应了地上植被的变化,即微生物与环境关系的建立与地上植被类型的关系更密切。  相似文献   

14.
许多动物的声通讯行为存在显著的季节变化,鸟类的鸣唱也是如此。雄鸟鸣唱具有宣告领域和吸引配偶的功能,在繁殖季节与非繁殖季节之间应存在一定差异,但差异如何?具体表现在哪些方面?这在很多鸟类中尚未可知。本研究以一种在秋季也有显著鸣唱行为的城市常见小型鸣禽——白头鹎(Pycnonotussinensis)为研究对象,比较其在春季(繁殖季)与秋季(非繁殖季)的鸣唱差异,并分析可能的原因。于2020至2021连续两年的春、秋季分别在武汉地区各采集了27只和30只雄性白头鹎的鸣唱录音,共测量分析春季鸣唱372个,秋季鸣唱435个。对测得的各鸣唱参数数据进行季节间比较,结果显示,白头鹎的鸣唱持续时间和鸣唱音节数存在显著季节差异,春季鸣唱的持续时间较秋季更长,鸣唱音节数更多。鸣唱的频率、能量分布等其他声学参数,以及鸣唱型出现率(反映鸣唱曲目大小)均未表现出显著季节差异。白头鹎鸣唱的时程特征相对其他鸣声特征更具季节可塑性。此外,还发现同一采样点的白头鹎春、秋两季使用相同的鸣唱型。本研究结果表明,春季白头鹎的单位时间鸣唱输出量更大,鸣唱行为更活跃,这与繁殖季节鸟类的领域性更强、为繁殖成功投入更多相一致。白头...  相似文献   

15.
Changes in various components of photosynthetic activity duringthe dark induced senescence of detached wheat leaves, maintainedat 25°C (control) and 35°C (mildly elevated temperaturetreatment), were examined. Senescence-associated decline measuredup to 96 h, in photosynthetic activity was appreciably hastenedat 35°C, than at 25°C as evident by the relative higherlosses of chlorophyll, photosystem (PS) II and PS I catalyzedphotochemical activities and ribulose-1,5-bisphosphate (RuBP)carboxylase activity. In addition, a comparatively higher risein light scattering profile of isolated chloroplasts was notedat 35°C than at 25°C. Senescence-induced degradationof chlorophyll was faster at 35°C than at 25°C; on theother hand, the degradation of carotenoids was faster at 25°Cthan at 35°C. Furthermore, the ratio of carotenoids to chlorophyllincreased with senescence up to 96 hours, higher ratio beingobtained at 35°C than at 25°C. Both PS II and PS I activitiesshowed a transient rise in the beginning phase of dark incubation,whereas loss in chlorophyll was continuous throughout the periodof senescence. The initial rise observed in photochemical activitieswas attributable to the uncoupling of electron transport fromphotophosphorylation. Elevated temperature treatment resultedin greater inactivation of RuBP carboxylase than control. Itappears that during senescence the loss in chlorophyll and RuBPcarboxylase activity are triggered simultaneously. (Received June 7, 1985; Accepted October 30, 1985)  相似文献   

16.
In situ poly(hydroxyalkanoate) (PHA) levels and repeating-unit compositions were examined in stratified photosynthetic microbial mats from Great Sippewissett Salt Marsh, Mass., and Ebro Delta, Spain. Unlike what has been observed in pure cultures of phototrophic bacteria, the prevalence of hydroxyvalerate (HV) repeating units relative to hydroxybutyrate (HB) repeating units was striking. In the cyanobacteria-dominated green material of Sippewissett mats, the mole percent ratio of repeating units was generally 1HB:1HV. In the purple sulfur bacteria-dominated pink material the relationship was typically 1HB:2HV. In Sippewissett mats, PHA contributed about 0.5 to 1% of the organic carbon in the green layer and up to 6% in the pink layer. In Ebro Delta mats, PHA of approximately 1HB:2HV-repeating-unit distribution contributed about 2% of the organic carbon of the composite photosynthetic layers (the green and pink layers were not separated). Great Sippewissett Salt Marsh mats were utilized for more extensive investigation of seasonal, diel, and exogenous carbon effects. When the total PHA content was normalized to organic carbon, there was little seasonal variation in PHA levels. However, routine daily variation was evident at all sites and seasons. In every case, PHA levels increased during the night and decreased during the day. This phenomenon was conspicuous in the pink layer, where PHA levels doubled overnight. The daytime declines could be inhibited by artificial shading. Addition of exogenous acetate, lactate, and propionate induced two- to fivefold increases in the total PHA levels when applied in the daylight but had no effect when applied at night. The distinct diel pattern of in situ PHA accumulation at night appears to be related, in some phototrophs, to routine dark energy metabolism and is not influenced by the availability of organic nutrients.  相似文献   

17.
土壤水分交替变化对湿地松幼苗光合特性的影响   总被引:1,自引:0,他引:1  
以盆栽湿地松幼苗为材料,通过实验室模拟三峡库区从水淹到干旱的过程,设置常规供水(CK)、常规供水-轻度干旱-复水(DR),水淹(FL),水淹-轻度干旱-复水(FD)4个实验组,研究土壤水分交替变化对湿地松幼苗光合参数及叶绿素含量的影响.结果表明:(1)不同土壤水分处理条件对湿地松幼苗的净光合速率、气孔导度、蒸腾速率、胞间CO2浓度、气孔限制值、水分利用效率和光合色素含量都有一定影响.(2)在实验的前中期,DR、FL和FD组湿地松幼苗的光合速率、气孔导度、蒸腾速率都显著下降,DR和FD在实验后期回升到较高水平.(3)在整个实验期间各处理组的水分利用效率较对照都有不同程度上升,并以DR组的最大(4.95μmol·mmol-1).(4)随着处理时间延长,各处理组湿地松幼苗的总叶绿素含量及叶绿素a/b值均呈先降后升的趋势,其中叶绿素/类胡萝卜素的比值在4.379~6.019间波动,而叶绿素a/b值则在2.207~2.850间波动.研究发现,湿地松幼苗在水分代谢、光合生理等方面等能够很好地适应水淹以及"淹-干"的水分交替变化环境,并且在解除胁迫后能够迅速恢复生长,可以考虑用于三峡库区消落带的植被修复和重建.  相似文献   

18.
Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with the exception of substantial increased magnitudes in precipitation occurring during warmer months. Changes in the timing and magnitude of precipitation will alter the proportional contribution of bacteria and fungi to decomposition and nitrogen mineralization in this desert grassland.  相似文献   

19.
Exotic Earthworm Invasion and Microbial Biomass in Temperate Forest Soils   总被引:11,自引:0,他引:11  
Invasion of north temperate forest soils by exotic earthworms has the potential to alter microbial biomass and activity over large areas of North America. We measured the distribution and activity of microbial biomass in forest stands invaded by earthworms and in adjacent stands lacking earthworms in sugar maple-dominated forests in two locations in New York State, USA: one with a history of cultivation and thin organic surface soil horizons (forest floors) and the other with no history of cultivation and a thick (3–5 cm) forest floor. Earthworm invasion greatly reduced pools of microbial biomass in the forest floor and increased pools in the mineral soil. Enrichment of the mineral soil was much more marked at the site with thick forest floors. The increase in microbial biomass carbon (C) and nitrogen (N) in the mineral soil at this site was larger than the decrease in the forest floor, resulting in a net increase in total soil profile microbial biomass in the invaded plots. There was an increase in respiration in the mineral soil at both sites, which is consistent with a movement of organic matter and microbial biomass into the mineral soil. However, N-cycle processes (mineralization and nitrification) did not increase along with respiration. It is likely that the earthworm-induced input of C into the mineral soil created a microbial sink for N, preventing an increase in net mineralization and nitrification and conserving N in the soil profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号