首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
In order to evaluate the effect of alpha-2 adrenoreceptor blockade on the ACTH response to insulin-induced hypoglycaemia, six normal men were studied with and without yohimbine (30 mg p.o.) premedication. Despite a similar hypoglycaemic stimulus and significant suppression of the growth hormone response (P less than 0.05), no change was observed in basal or stimulated plasma ACTH, cortisol, arginine vasopressin (AVP) or prolactin responses following yohimbine. We conclude that alpha-2 adrenoceptor blockade with yohimbine does not significantly affect the ACTH response to hypoglycaemia in man.  相似文献   

2.
We studied the effect of alpha-1 and alpha-2 blockers (prazosin and yohimbine) on systolic blood pressure (SBP) and on renal norepinephrine (NE) content in Sprague-Dawley normotensive and DOCA-salt rats. The administration of desoxycorticosterone acetate (DOCA) to these rats for 6 weeks increased their SBP from 137 to 183 mmHg (p less than .001). This increase was prevented by simultaneous administration of prazosin (p less than .001), yohimbine (p less than .01), or prazosin + yohimbine (p less than .001). DOCA rats on saline and on yohimbine had lower renal NE content (p less than .05 and p less than .001, respectively) than normotensive rats. Renal NE content of DOCA rats on yohimbine decreased with respect to those treated with prazosin (p less than .001) or prazosin + yohimbine (p less than .05). Besides, renal NE content of DOCA rats on prazosin increased when compared to control DOCA rats (p less than .05). However, these drugs showed no effect on SBP and on renal NE content in normotensive rats. These findings further confirm that the alpha adrenoceptor blockade can prevent the hypertension of DOCA-salt rats in such a way that their blood pressure stabilizes at similar levels to those observed in normotensive treated animals.  相似文献   

3.
The purpose of the current experiment was to study the role of various adrenoceptor subtypes in the cardiovascular response to cocaine in conscious squirrel monkeys. A variety of adrenoceptor antagonists were administered i.v. prior to the administration of 0.3 mg/kg cocaine (i.v.). Cocaine alone produced an increase in both blood pressure and heart rate. The non-selective alpha adrenoceptor antagonist phentolamine produced a dose-dependent antagonism of the pressor effect of cocaine, as did the alpha-1 selective antagonist prazosin. The alpha-2 selective antagonist yohimbine had no effect on the pressor effect of cocaine. The non-selective beta antagonist propranolol enhanced the pressor effect of cocaine as did the beta-1 selective antagonist atenolol. However, the effect of atenolol was not dose-dependent. The beta-2 selective antagonist ICI 118,551 and labetalol, which blocks both alpha and beta adrenoceptors, did not alter the pressor effect of cocaine. Propranolol, atenolol, and labetalol all antagonized the tachycardiac effect of cocaine in a dose-dependent manner, while the beta-2 antagonist ICI 118,551 did not. Phentolamine, prazosin and yohimbine also reduced the tachycardiac effect of cocaine, although these effects were dose-dependent only for yohimbine, which also significantly elevated baseline heart rate. These results indicate that alpha-1 adrenoceptor mechanisms mediate the pressor effect of cocaine, while beta-1 adrenoceptor mechanisms are involved in the tachycardiac effect of cocaine in squirrel monkeys. Propranolol potentiated cocaine's pressor effect through beta-2 independent mechanisms. Thus, neither alpha-2 nor beta-2 adrenoceptor mechanisms appear to be involved in cocaine's cardiovascular effects.  相似文献   

4.
The experiments on rats have shown that selective alpha 1 and alpha 2 adrenoceptor blockers (prazosin and yohimbine) and an inhibitor of dopamine-beta-hydrolase FD-008 failed to change the antinociceptive effect of baclofen, a direct GABAB receptor agonist. The antinociceptive effect of THIP and depakin, acting predominantly on GABAA receptors, was significantly reduced by prazosin, FD-008 and yohimbine in vocalization test. In tail-flick test the analgetic effect of THIP and depakin was not altered by prazosin and FD-008, but was increased by yohimbine. The role of adrenergic mechanisms in GABAA and GABAB receptor-mediated analgesia is discussed.  相似文献   

5.
We tested the hypothesis that dexmedetomidine (Dex) has greater alpha(2)- vs. alpha(1) selectivity than clonidine and causes more alpha(2)-selective vasoconstriction in the human forearm. After local beta-adrenergic blockade with propranolol, forearm blood flow (plethysmography) responses to brachial artery administration of Dex, clonidine, and phenylephrine (alpha(1)-agonist) were determined in healthy young adults before and after alpha(2)-blockade with yohimbine (n = 10) or alpha(1)-blockade with prazosin (n = 9). Yohimbine had no effect on phenylephrine-mediated vasoconstriction but blunted Dex-mediated vasoconstriction (mean +/- SE: -41 +/- 5 vs. -11 +/- 2%; before vs. after yohimbine) more than clonidine-mediated vasoconstriction (-39 +/- 5 vs. -28 +/- 4%; before vs. after yohimbine) (P < 0.02). Prazosin blunted phenylephrine-mediated vasoconstriction (-39 +/- 4 vs. -8 +/- 2%; before vs. after prazosin) but had similar effects on both Dex- (-30 +/- 4 vs. -39 +/- 6%; before vs. after prazosin) and clonidine-mediated vasoconstriction (-29 +/- 3 vs. -41 +/- 7%; before vs. after prazosin) (P > 0.7). Both Dex and clonidine reduced deep forearm venous norepinephrine concentrations to a similar extent (-59 +/- 12 vs. -55 +/- 10 pg/ml; Dex vs. clonidine, P > 0.6); this effect was abolished by yohimbine and blunted by prazosin. These results suggest that Dex causes more alpha(2)-selective vasoconstriction in the forearm than clonidine. The similar vasoconstrictor responses to both drugs after prazosin might be explained by the presynaptic effects on norepinephrine release.  相似文献   

6.
The effects of various doses (0.01-1.00 mg/kg) of yohimbine, an alpha-2 adrenoceptor antagonist, on the erectile and ejaculatory response elicited by manual penile stimulation were investigated in male dogs. Systemic administration of yohimbine caused a biphasic effect on ejaculatory response; the amount of ejaculate produced by the genital stimulation (for 5 min) was dose-dependently increased by low doses (0.01-0.10 mg/kg) of yohimbine, whereas it was decreased by the highest dose (1.00 mg/kg) of yohimbine. The erectile potency was attenuated only, by the highest dose of yohimbine. The most effective dose (0.10 mg/kg) of yohimbine on ejaculation did not affect the duration of penile erection after removing the genital stimulation. In a stereoisomer's testing, the stimulatory effect on ejaculation was also observed by rauwolscine, an alpha-2 adrenoceptor antagonist (0.03 and 0.10 mg/kg), but not by corynanthine, an alpha-1 adrenoceptor antagonist (0.10 and 0.30 mg/kg). These results suggest that yohimbine at low doses specifically facilitate the ejaculatory response through the blockade of the alpha-2 adrenoceptors. This study also indicates that the effects of yohimbine on male genital responses vary with its dosage used.  相似文献   

7.
Fifteen male white-tailed deer (Odocoileus virginianus) were administered xylazine hydrochloride (1 mg/kg BW i.m.), xylazine hydrochloride (1 mg/kg i.m.) followed by caffeine sodium benzoate (10 mg/kg i.m.), xylazine hydrochloride (0.5 mg/kg i.m.) and ketamine hydrochloride (4.5 mg/kg i.m.), and xylazine hydrochloride (1 mg/kg i.m.) followed by yohimbine hydrochloride (0.125 mg/kg i.m.), in a Latin Square design. Mean dry matter intake (DMI) for 4 days pre-treatment was compared to each of 4 days post-treatment. A significant (P less than 0.01) decrease in DMI was found only on the first day following treatment for each of the four drug combinations. The percent decreases in DMI on the first 24-hr period after immobilization were: xylazine hydrochloride 47%, xylazine hydrochloride/caffeine sodium benzoate 36%, xylazine hydrochloride/yohimbine hydrochloride 36%, and xylazine hydrochloride/ketamine hydrochloride 31%. The xylazine hydrochloride/ketamine hydrochloride combination was found to be insufficient to adequately sedate the deer. The use of caffeine or yohimbine hydrochloride is recommended to reduce recumbency time, but offers no improvement in xylazine hydrochloride-induced anorexia.  相似文献   

8.
The effects of xylazine on porcine myometrial contractility were studied in vitro using uterine strips to determine the alpha 2-adrenergic influences during the diestrous stage of the estrous cycle. Xylazine (10(-8)-10(-5) M) caused a dose-dependent increase in the amplitude of myometrial contractility. The alpha 2-adrenoceptor antagonists idazoxan and yohimbine (10(-8)-10(-6) M) blocked the effects of xylazine in a dose-dependent manner. Yohimbine was approximately 10 times more potent than idazoxan in this regard. In contrast, an alpha 1-adrenoceptor antagonist prazosin (10(-7) and 10(-6) M) did not block the xylazine-induced increase in myometrial contractility, but a higher dose of prazosin (10(-5) M) did reduce the effects of xylazine. When the porcine uterine strips were pretreated with Ca2(+)-free Tyrod's solution or verapamil, a Ca2+ channel blocker, the effects of xylazine on myometrial contractility were completely abolished, whereas those of carbachol were only moderately reduced. The results suggest that the xylazine-induced myometrial contractility is mediated by alpha 2-adrenoceptors and that this effect is mediated, at least in part, by Ca2+ channels, whereas the effect of carbachol is attributed to an increase in both Ca2+ entry and release of Ca2+ from intracellular pools.  相似文献   

9.
In the rat superior mesenteric arteries, the mechanical responses to perivascular nerve stimulation were characterized. The predominant response was contraction mediated by the release of norepinephrine, acting postjunctionally on alpha 1-adrenoceptors. These frequency-dependent contractions were unaffected by the alpha 2-selective adrenoceptor antagonist yohimbine, but were markedly attenuated by clonidine, the alpha 2-selective adrenoceptor agonist. In the presence of prazosin, the alpha 1-selective antagonist, a significant component of the nerve-mediated contraction was still present. At the concentrations used, prazosin, yohimbine, as well as clonidine acted as competitive antagonists of response to exogenous norepinephrine. This differential inhibition of norepinephrine- and nerve-mediated responses suggested the presence of distinct postjunctional adrenoceptors. The effects of clonidine and yohimbine are interpreted to arise from prejunctional modulation of norepinephrine release. In 30 of the 100 vessels studied, there was spontaneous myogenic tone. In these arteries, field stimulation caused frequency- and voltage-dependent relaxations. These responses were neural in origin, dependent on sympathetic nerve activity, but were nonadrenergic and noncholinergic in nature. Naloxone, indomethacin, and substance P inhibited these relaxations with no significant effect on the tone. The opioid agonist, 1-13 dynorphin relaxed these vessels and only naloxone inhibited this response. The effects of these agents were selective against field-stimulated responses since they did not alter the relaxation to the nonspecific agent sodium nitroprusside. These results provide circumstantial evidence for opioid-mediated vascular relaxation that is presynaptically modulated by prostanoids and substance P.  相似文献   

10.
The pronounced activation of sympathetic nervous system is a necessary prerequisite for the development of neurogenic pulmonary edema (NPE) in rats with balloon compression of spinal cord. In this study we examined whether this is a consequence of rapid activation of spinal pathways leading to sympathetic venoconstriction, blood pressure rise, and reflex bradycardia. We found that NPE development can be prevented by epidural upper thoracic anesthesia or by transection of the upper spinal cord. This indicates an important role of spinal pathways activation. NPE development can also be prevented by moderate blood loss, supporting the role of blood redistribution to pulmonary circulation. In rats developing NPE the catecholamine surge following spinal cord compression involved not only a dramatic increase of circulating norepinephrine but also of epinephrine levels. The pretreatment of rats with α-1 adrenoceptor blocker prazosin, α-2 adrenoceptor blocker yohimbine, or calcium channel blocker nifedipine prevented NPE development, whereas the effect of β-adrenoceptor blockade with propranolol was less convincing. In conclusion, considerable activation of thoracic spinal pathways, followed by marked catecholamine secretion, play a major role in the development of NPE in spinal cord-injured rats. Enhanced α-adrenergic nifedipine-sensitive vasoconstriction is responsible for observed blood pressure changes, subsequent baroreflex bradycardia, and blood volume redistribution, which represent major pathogenetic mechanisms of NPE development.  相似文献   

11.
Isoproterenol injected intravenously in dogs (3 mg/kg-1) and rats (5 mg/kg-1) induced an increase in blood pressure. After alpha 1 blockade (by AR-C 239, 0.1 mg . kg-1 i.v.) or alpha 2 blockade (by yohimbine, 1 mg/kg-1 i.v.) isoproterenol, as adrenaline, again induced an increase in blood pressure. This hypertensive effect was suppressed by an alpha 2 adrenoceptor blocking agent after an alpha 1 adrenoceptor blocking agent, and vice versa. These results are compatible with stimulation by high doses of isoproterenol of both alpha 1 and alpha 2 adrenoceptors to produce increase in blood pressure.  相似文献   

12.
Ko JC  Hsu WH  Evans LE 《Theriogenology》1990,33(3):601-611
The effects of alpha-adrenoreceptor antagonists prazosin (alpha-1), yohimbine (alpha-2), and idazoxan (alpha-2) on xylazine-induced bovine uterine contractility were tested in vitro. Uterine strips from proestrous/estrous and diestrous cows were mounted in tissue baths containing Tyrode's solution. Changes in uterine contractility were measured by strain gauge. The following results were observed: 1) Xylazine increased uterine contractility in a dose dependent manner (cumulative concentrations: 10(-8), 3x10(-8), 10(-7), 3x10(-7) and 10(-6)M). 2) Idazoxan (10(-8), 10(-7) and 10(-6)M) and yohimbine (10(-6), 10(-5) and 10(-4)M) antagonized uterine contractility induced by xylazine in a dose-dependent manner. Idazoxan was approximately 50 to 100 times more potent than yohimbine. 3) Prazosin (10(-5)M) did not alter the effect of xylazine on uterine contractility. These results suggested that xylazine-induced uterine contractility in the cyclic cow is directly mediated by myometrial alpha-2 adrenoreceptors.  相似文献   

13.
Presynaptic blockade of cutaneous vasoconstrictor nerves (VCN) abolishes the axon reflex (AR) during slow local heating (SLH) and reduces the vasodilator response. In a two-part study, forearm sites were instrumented with microdialysis fibers, local heaters, and laser-Doppler flow probes. Sites were locally heated from 33 to 40 degrees C over 70 min. In part 1, we tested whether this effect of VCN acted via nitric oxide synthase (NOS). In five subjects, treatments were as follows: 1) untreated; 2) bretylium, preventing neurotransmitter release; 3) N(G)-nitro-L-arginine methyl ester (L-NAME) to inhibit NOS; and 4) combined bretylium + L-NAME. At treated sites, the AR was absent, and there was an attenuation of the ultimate vasodilation (P < 0.05), which was not different among those sites (P > 0.05). In part 2, we tested whether norepinephrine and/or neuropeptide Y is involved in the cutaneous vasodilator response to SLH. In seven subjects, treatments were as follows: 1) untreated; 2) propranolol and yohimbine to antagonize alpha- and beta-receptors; 3) BIBP-3226 to antagonize Y(1) receptors; and 4) combined propranolol + yohimbine + BIBP-3226. Treatment with propranolol + yohimbine or BIBP-3226 significantly increased the temperature at which AR occurred (n = 4) or abolished it (n = 3). The combination treatment consistently eliminated it. Importantly, ultimate vasodilation with SLH at the treated sites was significantly (P < 0.05) less than at the control. These data suggest that norepinephrine and neuropeptide Y are important in the initiation of the AR and for achieving a complete vasodilator response. Since VCN and NOS blockade in combination do not have an inhibition greater than either alone, these data suggest that VCN promote heat-induced vasodilation via a nitric oxide-dependent mechanism.  相似文献   

14.
Ketamine and xylazine used in combination have been shown to be effective, easily administered, cost efficient agents for surgical anesthesia in the rabbit. The effect of xylazine on the central nervous system has been shown to be mediated through alpha-2 adrenergic receptors. Yohimbine, an alpha-2 adrenergic antagonist has been shown to reverse xylazine induced depression and partially antagonize ketamine in other species. We evaluated the antagonistic effect of yohimbine on ketamine/xylazine anesthesia in the rabbit. Six New Zealand White rabbits were anesthetized with intramuscular ketamine (50 mg/kg) and xylazine (10 mg/kg) to establish baseline parameters including respiratory rate, heart rate, and palpebral, pedal and postural reflex activity. Fourteen days later each rabbit was subjected to the same anesthetic regimen followed 30 minutes later by the intravenous administration of yohimbine (0.2 mg/kg). The duration of anesthesia estimated by the time elapsed between the loss and return of the palpebral reflex was reduced in the yohimbine treated trial (means = 29.7 +/- 1.9 minutes) compared to the control trial (means = 67.0 +/- 13.5 minutes). The palpebral reflex returned within 5 minutes following yohimbine treatment. Our results indicated that yohimbine is an effective antagonist of ketamine/xylazine anesthesia in the rabbit. Yohimbine decreases anesthetic duration after intravenous administration and also may aid in the control of undesirable anesthetic effects and overdosage.  相似文献   

15.
Neuropeptide Y, PYY, and PP (200 pmol) alter intraluminal pressure in the duodenum and colon of rats following their administration into the thoracic (T8-T10) region of the spinal cord. Neuropeptide Y decreases the tone of the duodenum and the colon following intrathecal (T8-T10) administration prior to an increase in tone to baseline or greater. There is no effect on intraluminal pressure of either the duodenum or the colon following intrathecal administration of NPY or PP into the lumbar (L4-L5) region of the spinal cord. Following intrathecal (T8-T10) administration of PYY and PP, increases in intraduodenal pressures are observed (+2.1 and +3.0 mmHg from saline baseline). Phasic contractions of the duodenum are increased following intrathecal administration of PYY into the thoracic spinal cord of rats. Neuropeptide Y, PYY, and PP increase intracolonic pressure +2.2, +3.3, and +3.7 mmHg from saline baseline, respectively. Phasic contractions of the colon are increased following PP intrathecal thoracic administration. Responsiveness of the duodenum or colon to the different ligands of the PP-fold peptide family in the absence of alpha-adrenergic blockade did not vary. The increases in intraluminal pressure of the duodenum and colon following intrathecal administration of the PP-fold peptides are attenuated by both alpha-1 adrenergic (prazosin) and alpha-2 adrenergic (yohimbine) blockade. There is a difference in responsiveness of the colon between the ligands of the PP-fold family in the presence of the alpha-2 adrenergic blockade. The findings of this study indicate that duodenal and colonic motility are modulated by the PP-fold peptides at thoracic spinal sites via alteration of sympathetic outflow.  相似文献   

16.
Clonidine inhibited the development of gastric mucosal lesions induced by either acidified ethanol or indomethacin. The ED50 values were: 7.1 and 5.2 microg x kg(-1) orally, respectively. The gastroprotective effect was antagonised by the pre-synaptic alpha-2 antagonist yohimbine, the more selective alpha-2 antagonist Ch-38083 and the pre-synaptic alpha-2B antagonist prazosin. Moreover, the non-selective opioid receptor antagonist naloxone, the delta receptor selective naltrindole also reversed the clonidine-induced mucosal protective action. Clonidine was also effective following intracerebroventricular administration with the ED50 of 37 ng/rat against ethanol-induced mucosal damage. Our results suggest that: 1) the gastroprotective effect of clonidine is likely to be mediated by alpha-2B adrenoceptor subtype; 2) there is an interaction between pre-synaptic alpha-2 adrenoceptors and opioid system; and 3) clonidine can induce gastroprotection by central mechanism.  相似文献   

17.
Early morning reduction in endothelium-dependent, flow-mediated dilation (FMD) may contribute to the high incidence of sudden cardiac death at this time of day. The mechanisms underpinning diurnal variation in FMD are unclear, but potentially relate to a circadian rhythm in sympathetic nerve activity. We hypothesized that blockade of α(1)-mediated sympathetic nerve activity would act to attenuate the diurnal variation in FMD. In a randomized and placebo-controlled design, we measured brachial artery FMD in 12 participants (mean age = 26 yr, SD = 3) at 0600 and 1600 after ingestion of an α(1)-blocker (prazosin, 1 mg/20 kg body mass) or placebo. Arterial diameter and shear rate were assessed using edge-detection software. Heart rate and blood pressure were also measured. Data were analyzed using linear mixed modeling. Following placebo, FMD was 8 ± 2% in the morning compared with 10 ± 3% in the afternoon (P = 0.04). Blockade with prazosin led to a slight but nonsignificant increase in morning FMD (P = 0.24) and a significant (P = 0.04) decrease in afternoon FMD, resulting in no diurnal variation (P = 0.20). Shear rate did not differ in the morning or afternoon under either condition (P > 0.23). Blood pressure was lower following prazosin compared with placebo (P < 0.02), an effect that was similar at both times of day (P > 0.34). Heart rate and norepinephrine levels were higher in the afternoon following prazosin. These data indicate that α(1)-adrenoreceptor activity does not explain lower morning endothelium-dependent FMD.  相似文献   

18.
Very little is known about the neurohumoral control of avian pigmentation and about adrenergic subtypes mediating catecholaminergic-controlled color change in nonmelanophore pigment cells of poikilothermic vertebrates. To determine the adrenoceptor subtypes in avian melanocytes and fish GEM-81 competitive binding assays were performed with the following radioactive ligands and their cold ligand counterparts: [3H]prazosin and benoxathian or unlabeled prazosin; [3H]rauwolscine and idazoxan or yohimbine; [3H]propranolol and metoprolol or ICI 118,551 and [125I]iodocyanopindolol and ICI 118,551. Our results suggest that: alpha(1)-adrenoceptors [K(i)=1.38 micro M; maximum displacement (md)=80%, benoxathian), alpha(2)-adrenoceptors (K(i)=0.21 micro M; md=82%, idazoxan), and beta(2)-adrenoceptors (K(i)=7.3 micro M; md=73%, ICI 118,551) are expressed in avian melanocytes, and that alpha(2)-adrenoceptors (K(i)=1.24 nM, idazoxan, K(i)=59 nM, yohimbine, md=65%, idazoxan and yohimbine; K(i)=0.19 nM, md=69%, prazosin), beta(1)-adrenoceptors (K(i)=22.2 micro M, md=75%, metoprolol), and beta(2)-adrenoceptors (K(i)=32.2 micro M, md=92%, ICI 118,551) are expressed in GEM-81 erythrophoroma cells. This may be the first study to show the presence of adrenoceptors in avian melanocytes and one of a few characterizing adrenoceptor subtypes in teleost nonmelanophore pigment cells.  相似文献   

19.
Desipramine (DMI), protriptyline, chlorpromazine, amitriptyline and cocaine, alone or in the presence of prazosin, produced a dose-related inhibition of contractions induced by field stimulation of the rat vas deferens. The inhibition of contractions was readily reversed by yohimbine. In contrast, when yohimbine was first added to the bath, all agents, except chlorpromazine, produced a dose-related enhancement of contractions which were readily reversed by prazosin. The potencies of these agents for induction of contractile inhibition, after prazosin, and contractile enhancement, after yohimbine, were similar. Both of the latter contractile responses of DMI were markedly attenuated or absent in tissues taken from rats pretreated with reserpine and alpha-methyl-para-tyrosine. The data indicate that, in the rat vas deferens, inhibition of norepinephrine reuptake results primarily in presynaptic (α2) receptor activation. Postsynaptic (α1) adrenergic activation by inhibition of norepinephrine reuptake can be demonstrated in this tissue only after presynaptic (α2) receptor blockade. The possible implications of the present studies to the delayed clinical onset of action of tricyclic antidepressants is discussed.  相似文献   

20.
The density of skin melanophores in many teleost fish decreases during long‐term adaptation to a white background. Using the medaka, Oryzias latipes, we previously reported that apoptosis is responsible for the decrease in melanophores, and that a sympathetic neurotransmitter, norepinephrine (NE), induces their apoptosis in skin tissue cultures. In this study, we show that NE‐induced apoptosis of melanophores is mediated by the activation of α2‐adrenoceptors. Clonidine, an α2‐adrenoceptor agonist, induced apoptotic melanophore death in skin organ culture, while phenylephrine, an α1‐adrenoceptor agonist, had no effect. NE‐induced apoptosis was diminished by an α2‐adrenoceptor antagonist, yohimbine, but an α1‐adrenoceptor antagonist, prazosin, did not abrogate the effect of NE. Furthermore, forskolin inhibited NE‐induced apoptosis, while an inhibitor of PKA, H‐89, mimicked the effect of NE. These results suggest that NE induces apoptosis in melanophores by attenuating cAMP‐PKA signaling via α2‐adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号