首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The presence of dopamine in the pituitary of the clawed toad Xenopus laevis was studied by light and electron microscope immunocytochemistry, using pre- and postembedding techniques. Light microscopy showed the presence of an intricate, anti-dopamine-positive fibre network throughout the pars intermedia. In preembedded stained material, dopamine appeared to occur in varicosities which make synaptic contacts with both folliculo-stellate cells and melanotrope cells. Postembedding immunogold staining of freeze-substituted material permitted the localization of anti-dopamine reactivity in electron-dense vesicles in these varicosities. This finding supports the hypothesis that dopamine is involved in the (inhibitory) control of melanotrope cell activity in X. laevis.  相似文献   

2.
The melanotrope cells in the pars intermedia in the pituitary of Xenopus laevis synthesize and release the melanophore-stimulating hormone (alpha MSH), a small peptide that causes skin darkening during the process of background adaptation. Evidence has been found for a heterogeneity in biosynthetic activity of the melanotrope cells. In the present study two questions were addressed: (1) does the melanotrope cell population also show heterogeneous alpha MSH-release, and (2) can this heterogeneity be changed by extracellular messengers? Since dopamine is known to inhibit alpha MSH-release, this messenger is used to study the regulation of the heterogeneity. To quantify alpha MSH-release from individual cells, a cell blotting procedure has been developed for the binding and relative quantification of the small alpha MSH peptide. The immunoblotting procedure involves binding of the cells to a carrier slide and binding of released alpha MSH to a nitrocellulose filter. After immunostaining, the amount of alpha MSH per cell was quantitated by image analysis. Untreated melanotrope cells reveal a distinct variability in alpha MSH-release, some cells showing low secretory activity, whereas others are strongly secreting, indicating heterogeneity of alpha MSH-release. Dopamine treatment strongly inhibits alpha MSH-release from individual cells, resulting in a clearly less pronounced melanotrope cell heterogeneity. The effect of dopamine appears to be dose-dependent as a low dopamine concentration has only a moderate effect on the alpha MSH-release. It is proposed that dopamine is a physiological regulator of the degree of melanotrope cell heterogeneity in alpha MSH-release.  相似文献   

3.
1. Peptide release from the neurointermediate lobe of Xenopus laevis has been studied using dual pulse-chase incubation, superfusion and HPLC techniques. 2. Lobes release pulse-labelled material in two phases, the first phase lasting about 6 hr, the second persisting up to 14 hr. 3. In both phases similar, POMC-derived peptides are released. Their release can be inhibited by dopamine. 4. When release during the first phase is inhibited, newly synthesized peptides are shunted into the second release pathway. 5. It is concluded that the neurointermediate lobe contains two release compartments. The possible locations of these compartments within melanotrope cells have been discussed.  相似文献   

4.
Catecholamines and GABA are neurotransmitters involved in the regulation of release of pro-opiomelanocortin (POMC) derived peptides from the neurointermediate lobe of Xenopus laevis. The present study concerns the relation of these neurotransmitters to the adenylate cyclase system of the melanotrope cell. During in vitro incubation of isolated melanotrope cells it was found that dopamine, adrenaline and LY 171555 induced inhibition of forskolin-stimulated cAMP production and concomitantly inhibited MSH release. Activation of the GABAb receptors by baclofen also induced inhibition of cAMP production and alpha MSH secretion. Activation of the GABAa receptors evoked stimulation of cAMP production, while alpha MSH release was slightly inhibited, indicating that the GABAa mechanism may prove to be complex. A dual regulation through two subtypes of this receptor might be involved, one stimulating release through the adenylate cyclase system, while the other would inhibit secretion.  相似文献   

5.
The cellular form of the prion protein (PrP(C)) is a plasma membrane-anchored glycoprotein whose physiological function is poorly understood. Here we report the effect of transgene expression of Xenopus PrP(C) fused to the C-terminus of the green fluorescent protein (GFP-PrP(C)) specifically in the neuroendocrine intermediate pituitary melanotrope cells of Xenopus laevis. In the transgenic melanotrope cells, the level of the prohormone proopiomelanocortin (POMC) in the secretory pathway was reduced when the cells were (i) exposed for a relatively long time to the transgene product (by physiologically inducing transgene expression), (ii) metabolically stressed, or (iii) forced to produce unfolded POMC. Intriguingly, although the overall ultrastructure was normal, electron microscopy revealed the induction of lysosomes taking up POMC secretory granules (crinophagy) in the transgenic melanotrope cells, likely causing the reduced POMC levels. Together, our results indicate that in neuroendocrine cells transgene expression of PrP(C) affects the functioning of the secretory pathway and induces crinophagy.  相似文献   

6.
Release of alpha-MSH from the pars intermedia melanotrope cells of Xenopus laevis is regulated by various classical neurotransmitters and neuropeptides. We have examined the effect of two of these regulatory substances, the neurotransmitter GABA and the CRF-related peptide sauvagine, on the adenylate cyclase system of the melanotrope cells. Sauvagine treatment, which stimulates alpha-MSH release, lead to an elevation in the level of cyclic-AMP, an effect which was potentiated by cholera toxin. Treatment with baclofen, a GABAB receptor agonist, gave a pertussis toxin-sensitive decrease in the cyclic-AMP level and an inhibition of alpha-MSH release. We conclude that sauvagine stimulates alpha-MSH secretion through activation of adenylate cyclase and that GABAB receptor activation inhibits secretion through inhibition of cyclic-AMP production. Baclofen treatment sensitized melanotrope cells to the stimulatory action of 8-bromo-cyclic-AMP on the secretion of alpha-MSH. This observation supports the conclusion that GABAB receptor activation inhibits cyclic-AMP production.  相似文献   

7.
The neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are implicated in the regulation of gene expression and hormone secretion in mammalian melanotrope cells and a mammalian pro-opiomelanocortin (POMC)-producing tumor cell line, but the physiological relevance of this regulation is elusive. The purpose of the present study was to establish if these peptides affect biosynthetic and secretory processes in a well-established physiological model for endocrine cell functioning, the pituitary melanotrope cells of the amphibian Xenopus laevis, which hormonally control the process of skin color adaptation to background illumination. We show that both PACAP and VIP are capable of stimulating the secretory process of the Xenopus melanotrope cell. As the peptides are equipotent, they may exert their actions via a VPAC receptor. Moreover, PACAP stimulated POMC biosynthesis and POMC gene expression. Strong anti-PACAP immunoreactivity was found in the pituitary pars nervosa (PN), suggesting that this neurohemal organ is a source of neurohormonal PACAP action on the melanotropes in the intermediate pituitary. We propose that the PACAP/VIP family of peptides has a physiological function in regulating Xenopus melanotrope cell activity during the process of skin color adaptation.  相似文献   

8.
We have previously shown that the melanotrope population of the pituitary intermediate lobe of Rana ridibunda is composed of two subpopulations, of low (LD) and high density (HD), that show distinct ultrastructural features and display different synthetic and secretory rates. To investigate whether LD and HD melanotrope cells also differ in proopiomelanocortin (POMC) processing, we have analyzed the POMC-end products in single cells from both subpopulations by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The mass spectra revealed the presence of 8 POMC-derived peptides in HD and LD melanotrope cells, indicating a similar processing of the precursor in both subpopulations. However, the relative abundance of three POMC-end products (i.e. lys-gamma1-MSH, acetyl-alpha-MSH, and CLIP fragment) was higher in the HD subset. Moreover, two peptides with molecular weights of 1030 and 1818 Da, respectively, were detected that could not be assigned to any product deduced from the frog POMC sequence. The relative amount of the 1030 Da peptide was higher in LD melanotrope cells. Taken together, our results suggest that POMC processing is differentially regulated in the two melanotrope cell subsets.  相似文献   

9.
Some amphibian brain-melanotrope cell systems are used to study how neuronal and (neuro)endocrine mechanisms convert environmental signals into physiological responses. Pituitary melanotropes release alpha-melanophore-stimulating hormone (alpha-MSH), which controls skin color in response to background light stimuli. Xenopus laevis suprachiasmatic neurons receive optic input and inhibit melanotrope activity by releasing neuropeptide Y (NPY), dopamine (DA) and gamma-aminobutyric acid (GABA) when animals are placed on a light background. Under this condition, they strengthen their synaptic contacts with the melanotropes and enhance their secretory machinery by upregulating exocytosis-related proteins (e.g. SNAP-25). The inhibitory transmitters converge on the adenylyl cyclase system, regulating Ca(2+) channel activity. Other messengers like thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH, from the magnocellular nucleus), noradrenalin (from the locus coeruleus), serotonin (from the raphe nucleus) and acetylcholine (from the melanotropes themselves) stimulate melanotrope activity. Ca(2+) enters the cell and the resulting Ca(2+) oscillations trigger alpha-MSH secretion. These intracellular Ca(2+) dynamics can be described by a mathematical model. The oscillations travel as a wave through the cytoplasm and enter the nucleus where they may induce the expression of genes involved in biosynthesis and processing (7B2, PC2) of pro-opiomelanocortin (POMC) and release (SNAP-25, munc18) of its end-products. We propose that various environmental factors (e.g. light and temperature) act via distinct brain centers in order to release various neuronal messengers that act on the melanotrope to control distinct subcellular events (e.g. hormone biosynthesis, processing and release) by specifically shaping the pattern of melanotrope Ca(2+) oscillations.  相似文献   

10.
The cellular form of prion protein (PrPC) is anchored to the plasma membrane of the cell and expressed in most tissues, but predominantly in the brain, including in the pituitary gland. Thus far, the biosynthesis of PrPC has been studied only in cultured (transfected) tumour cell lines and not in primary cells. Here, we investigated the intracellular fate of PrPCin vivo by using the neuroendocrine intermediate pituitary melanotrope cells of the South-African claw-toed frog Xenopus laevis as a model system. These cells are involved in background adaptation of the animal and produce high levels of its major secretory cargo proopiomelanocortin (POMC) when the animal is black-adapted. The technique of stable Xenopus transgenesis in combination with the POMC gene promoter was used as a tool to express Xenopus PrPC amino-terminally tagged with the green fluorescent protein (GFP-PrPC) specifically in the melanotrope cells. The GFP-PrPC fusion protein was expressed from stage-25 tadpoles onwards to juvenile frogs, the expression was induced on a black background and the fusion protein was subcellularly located mainly in the Golgi apparatus and at the plasma membrane. Pulse-chase metabolic cell labelling studies revealed that GFP-PrPC was initially synthesized as a 45-kDa protein that was subsequently stepwise glycosylated to 48-, 51-, and eventually 55-kDa forms. Furthermore, we revealed that the mature 55-kDa GFP-PrPC protein was sulfated, anchored to the plasma membrane and cleaved to a 33-kDa product. Despite the high levels of transgene expression, the subcellular structures as well as POMC synthesis and processing, and the secretion of POMC-derived products remained unaffected in the transgenic melanotrope cells. Hence, we studied PrPC in a neuroendocrine cell and in a well-defined physiological context.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of neuronal cell survival and differentiation factors but is thought to be involved in neuronal cell proliferation and myelination as well. To explore the role of BDNF in vivo, we employed the intermediate pituitary melanotrope cells of the amphibian Xenopus laevis as a model system. These cells mediate background adaptation of the animal by producing high levels of the prohormone proopiomelanocortin (POMC) when the animal is black adapted. We used stable X. transgenesis in combination with the POMC gene promoter to generate transgenic frogs overexpressing BDNF specifically and physiologically inducible in the melanotrope cells. Intriguingly, an approximately 25-fold overexpression of BDNF resulted in hyperplastic glial cells and myelinated axons infiltrating the pituitary, whereby the transgenic melanotrope cells became located dispersed among the induced tissue. The infiltrating glial cells and axons originated from both peripheral and central nervous system sources. The formation of the phenotype started around tadpole stage 50 and was induced by placing white-adapted transgenics on a black background, i.e. after activation of transgene expression. The severity of the phenotype depended on the level of transgene expression, because the intermediate pituitaries from transgenic animals raised on a white background or from transgenics with only an approximately 5-fold BDNF overexpression were essentially not affected. In conclusion, we show in a physiological context that, besides its classical role as neuronal cell survival and differentiation factor, in vivo BDNF can also induce glial cell proliferation as well as axonal outgrowth and myelination.  相似文献   

12.
The p24 family consists of type I transmembrane proteins that are present abundantly in transport vesicles, may play a role in endoplasmic reticulum-to-Golgi cargo transport, and have been classified into subfamilies named p24alpha, -beta, -gamma, and -delta. We previously identified a member of the p24delta subfamily that is coordinately expressed with the prohormone proopiomelanocortin (POMC) in the melanotrope cells of the intermediate pituitary during black background adaptation of the amphibian Xenopus laevis ( approximately 30-fold increase in POMC mRNA). In this study, we report on the characterization of this p24delta member (Xp24delta(2)) and on the identification and characterization of a second member (Xp24delta(1)) that is also expressed in the melanotrope cells and that has 66% amino acid sequence identity to Xp24delta(2). The two p24delta members are ubiquitously expressed, but Xp24delta(2) is neuroendocrine enriched. During black background adaptation, the amount of the Xp24delta(2) protein in the intermediate pituitary was increased approximately 25 times, whereas Xp24delta(1) protein expression was increased only 2.5 times. Furthermore, the level of Xp24delta(2) mRNA was approximately 5-fold higher in the melanotrope cells of black-adapted animals than in those of white-adapted animals, whereas Xp24delta(1) mRNA expression was not induced. Therefore, the expression of Xp24delta(2) specifically correlates with the expression of POMC. Together, our findings suggest that p24delta proteins have a role in selective protein transport in the secretory pathway.  相似文献   

13.
The multifunctional prohormone, proopiomelanocortin (POMC), is processed in the melanotrope cells of the pituitary pars intermedia at pairs of basic amino acid residues to give a number of peptides, including alpha-melanophore-stimulating hormone (alpha-MSH). This hormone causes skin darkening in amphibians during background adaptation. Here we report the complete structure of Xenopus laevis prohormone convertase PC2, the enzyme thought to be responsible for processing of POMC to alpha-MSH. A comparative structural analysis revealed an overall amino acid sequence identity of 85-87% between Xenopus PC2 and its mammalian counterparts, with the lowest degree of identity in the signal peptide sequence (28-36%) and the region amino-terminal to the catalytic domain (59-60%). The occurrence of a second, structurally different PC2 protein reflects the expression of two Xenopus PC2 genes. The expression pattern of PC2 in the Xenopus pituitary gland of black- and white-adapted animals was found to be similar to that of POMC, namely high expression in active melanotrope cells of black animals. This observation is in line with a physiological role for PC2 in processing POMC to alpha-MSH.  相似文献   

14.
In the present study, we examined the amphibian Xenopus laevis as a model for stable transgenesis and in particular targeted transgene protein expression to the melanotrope cells in the intermediate pituitary. For this purpose, we have fused a Xenopus proopiomelanocortin (POMC) gene promoter fragment to the gene encoding the reporter green fluorescent protein (GFP). The transgene was integrated into the Xenopus genome as short concatemers at one to six different integration sites and at a total of one to approximately 20 copies. During early development the POMC gene promoter fragment gave rise to GFP expression in the total prosencephalon, whereas during further development expression became more restricted. In free-swimming stage 40 embryos, GFP was found to be primarily expressed in the melanotrope cells of the intermediate pituitary. Immunohistochemical analysis of cryosections of brains/pituitaries from juvenile transgenic frogs revealed the nearly exclusive expression of GFP in the intermediate pituitary. Metabolic labelling of intermediate and anterior pituitaries showed newly synthesized GFP protein to be indeed primarily expressed in the intermediate pituitary cells. Hence, stable Xenopus transgenesis with the POMC gene promoter is a powerful tool to study the physiological role of proteins in a well-defined neuroendocrine system and close to the in vivo situation.  相似文献   

15.
Previously, it has been shown that background color conditions regulate the overall activity of the frog intermediate lobe by varying the proportions of the two subtypes of melanotropes existing in the gland, the highly active or secretory melanotropes and hormone storage melanotropes, depending on melanocyte-stimulating hormone requirements. However, the factors and mechanisms underlying these background-induced changes are still unknown. In the present study, we investigated whether hypothalamic factors known to regulate melanotrope cell function can induce changes in vitro similar to those caused by background adaptation in vivo. We found that the inhibitors apomorphine (a dopamine receptor agonist) and neuropeptide Y decreased the number of active melanotropes and increased simultaneously that of storage melanotropes. On the other hand, the stimulator TRH increased the number of active cells and concomitantly reduced that of storage cells. Inasmuch as none of these treatments modified the apoptotic and proliferation rates in melanotrope cells, it appears that these hypothalamic factors caused actual interconversions of cells from a subpopulation to its counterpart. Taken together, these findings suggest that the hypothalamus would control melanotrope activity not only through short-term regulation of hormone synthesis and release, but also through a long-term regulation of the secretory phenotype of these cells whereby the activity of the intermediate lobe would be adjusted to fulfill the hormonal requirements imposed by background conditions.  相似文献   

16.
The bovine splenic nerve trunk contins mast cells, ganglion cells, small intensely flurescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structure could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300–800nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120–140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45–55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicle in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

17.
The bovine splenic nerve trunk contains mast cells, ganglion cells, small intensely fluorescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structures could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300-800 nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120-140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45-55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicles in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

18.
The pituitary melanotrope cells of the amphibian Xenopus laevis are responsible for the production of the pigment-dispersing peptide α-melanophore-stimulating hormone, which allows the animal to adapt its skin color to its environment. During adaptation to a dark background the melanotrope cells undergo remarkable changes characterized by dramatic increases in cell size and secretory activity. In this study we performed microarray mRNA expression profiling to identify genes important to melanotrope activation and growth. We show a strong increase in the expression of the immediate early gene (IEG) c-Fos and of the brain-derived neurotrophic factor gene (BDNF). Furthermore, we demonstrate the involvement of another IEG in the adaptation process, Nur77, and conclude from in vitro experiments that the expression of both c-Fos and Nur77 are partially regulated by the adenylyl cyclase system and calcium ions. In addition, we found a steady up-regulation of Ras-like product during the adaptation process, possibly evoked by BDNF/TrkB signaling. Finally, the gene encoding the 105-kDa heat shock protein HSPh1 was transiently up-regulated in the course of black-background adaptation and a gene product homologous to ferritin (ferritin-like product) was >100-fold up-regulated in fully black-adapted animals. We suggest that these latter two genes are induced in response to cellular stress and that they may be involved in changing the mode of mRNA translation required to meet the increased demand for de novo protein synthesis. Together, our results show that microarray analysis is a valuable approach to identify the genes responsible for generating coordinated responses in physiologically activated cells.  相似文献   

19.
The aminergic innervation of the foot of Lymnaea stagnalis was investigated using electron microscopy, immunocytochemistry, and HPLC. The foot was found to contain large amounts of serotonin and dopamine, though at lower concentrations than are found in nervous tissue. Serotonin containing tissue was concentrated in the ventral surface of the foot, under ciliated areas of the epidermis where it occurred in varicosities, with fine tracts joining these varicosities. Varicosities also occurred in deeper tissues, probably adjacent to mucus cells. Positive fluorescence for serotonin in axons was found in nerves innervating the foot, but few neuronal cell bodies containing serotonin were detected, indicating that most of the innervation was coming from the central ganglia. Axon varicosities were found using TEM on ciliated cells, mucus cells, and muscle cells as well as interaxonal junctions (possibly non-synaptic) within nerves. The neuronal varicosities contacting the ciliated cells and mucus cells contained mostly dense-cored vesicles of between 60 and 100 nm in diameter. Smaller, lucent vesicles also occurred in these terminals. The origin and significance of this innervation is discussed. It is suggested that both serotonin and dopamine may play a large role in controlling ciliary gliding by the foot.  相似文献   

20.

Background  

In black-background-adapted Xenopus laevis, the intermediate pituitary melanotrope cells are hyperactive, producing large amounts of their major secretory cargo proopiomelanocortin (POMC, representing ~80% of all newly synthesised proteins), whereas in white-adapted frogs these cells are only basally active. Here we explored in the hyperactive and basally active melanotrope cells the capacity for posttranslational POMC processing events in the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号