首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

2.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

3.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

4.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

5.
A method is described for the extraction of microsomal ouabain-sensitive (Na+ + K+)-activated ATPase from separated frog skin epithelium. The method yields a microsomal fraction containing (Na+ + K+)-stimulated activity in the range of 30–40 nmol · mg−1 · min−1 at 26 °C. This portion, which is also ouabain sensitive, is about half of the total activity in media containing Mg2+, Na+ and K+. These preparations also contain Mg2+-dependent or Ca2+-dependent activities which are not additive and which are not significantly affected by ouabain, Na+, K+ or Li+.The activations of the ouabain-sensitive ATPase activity by Mg2+, Na+, and K+ are similar to those described in other tissues. It is found that Li+ does not substitute for Na+ as an activator but in high concentrations does produce partial activation in the presence of Na+ with no K+. These results are pertinent to the reported observations of ouabain-sensitive Li+ flux across frog skin. It is concluded that this flux is not apparently due to a direct activating effect of Li+ on the sodium pump.  相似文献   

6.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

7.
Amino acid influx across the brush border membrane of the intact pig ileal epithelium was studied. It was examine whether in addition to system B, systems ASC and bo,+ were involved in transport of bipolar amino acids. The kinetics of interactions between lysine and leucine demonstrates that system bo,+ is present and accessible also to -glutamine. -aspartate (K1/2 0.3 mM) and -glutamate (Ki 0.5 mM) share a high affinity transporter with a maximum rate of 1.3 μmol cm−2 h−1, while only -glutamate with a K1/2 of 14.4 mM uses a low affinity transporter with a maximum rate of 2.7 μmol cm−2 h−1, system ASC, against which serine has a Ki of 1.6 mM. In the presence of 100 mM lysine, -glutamine (A), leucine (B), and methionine (C) fulfilled the criteria of the ABC test for transport by one and the same transporter. However, serine inhibits not only transport of -glutamate but also of glutamine (Ki 0.5 mM), and -glutamate inhibits part of the transport of glutamine. The test does, therefore, only indicate that the three bipolar amino acids have similar affinities for transport by systems B and ASC. Further study of the function of system B must be carried out under full inhibition by lysine and glutamate.  相似文献   

8.
9.
Exogenous (phorbol ester) and endogenous (diacylglycerol) activators of protein kinase C (PKC) inhibited sodium efflux across the gills of Atlantic cod Gadus morhua and inhibited sodium-plus-potassium-stimulated adenosine triphosphatase (Na+-K+-ATPase) in isolated chloride cells. The branchial sodium efflux measured in a perfused whole-body preparation was inhibited by 47% on administration of 10−6 mol.L−1 phorbol 12, 13-dibutyrate (PDB). The branchial perfusion pressure was increased by 46% by 10−6 mol.L−1 PDB. In contrast the synthetic diacylglycerol, 1-oleoyl-2-acetyl gycerol (OAG) did not alter significantly perfusion pressure but did reduce sodium efflux by 13% at a concentration of 4 × 10−6 mol.L−1. The effects of these agents on Na+-K+-ATPase activity were determined in isolated chloride cells with a control activity of 30.9 ± 1.9 μmol Pi mg protein−1 hour−1. PDB and OAG both inhibited enzyme activity in a dose-dependent manner, with 10−5 mol.L−1 causing 45% and 26% inhibition, respectively. These results suggest that PKC is involved in regulating sodium efflux in the gills of cod by modulating Na+-K+ATPase activity.  相似文献   

10.
A highly sensitive fluorimetric assay using 3-O-methylfluorescein phosphate as substrate was used in the determination of K+-dependent phosphatase activity in preparations of rat skeletal muscle. The gastrocnemius muscle was chosen because of mixed fibre composition. Crude, detergent treated homogenate was used so as to avoid loss of activity during purification. K+-dependent phosphatase activities in the range 0.19–0.37 μmol · (g wet weight)−1 · min−1 were obtained, the value decreasing with age and K+-deficiency. Complete inhibition of the K+-dependent phosphatase was obtained with 10−3 M ouabain. Using a KSCN-extracted muscle enzyme the intimate relation between K+-dependent phosphatase activity and (Na+ + K+)-activated ATP hydrolysis could be demonstrated. A molecular activity of 620 min−1 was estimated from simultaneous determination of K+-dependent phosphatase activity and [3H]ouabain binding capacity using the partially purified enzyme preparation. The corresponding enzyme concentration in the crude homogenates was calculated and corresponded well with the number of [3H]ouabain binding sites measured in intact muscles or biopsies hereof.  相似文献   

11.
The soybean (Glycine max) urease was immobilized on alginate and chitosan beads and various parameters were optimized and compared. The best immobilization obtained were 77% and 54% for chitosan and alginate, respectively. A 2% chitosan solution (w/v) was used to form beads in 1N KOH. The beads were activated with 1% glutaraldehyde and 0.5 mg protein was immobilized per ml of chitosan gel for optimum results. The activation and coupling time were 6 h and 12 h, respectively. Further, alginate and soluble urease were mixed to form beads and final concentrations of alginate and protein in beads were 3.5% (w/v) and 0.5 mg/5 ml gel. From steady-state kinetics, the optimum temperature for urease was 65 °C (soluble), 75 °C (chitosan) and 80 °C (alginate). The activation energies were found to be 3.68 kcal mol−1, 5.02 kcal mol−1, 6.45 kcal mol−1 for the soluble, chitosan- and alginate-immobilized ureases, respectively. With time-dependent thermal inactivation studies, the immobilized urease showed improved stability at 75 °C and the t1/2 of decay in urease activity was 12 min, 43 min and 58 min for soluble, alginate and chitosan, respectively. The optimum pH of urease was 7, 6.2 and 7.9 for soluble, alginate and chitosan, respectively. A significant change in Km value was noticed for alginate-immobilized urease (5.88 mM), almost twice that of soluble urease (2.70 mM), while chitosan showed little change (3.92 mM). The values of Vmax for alginate-, chitosan-immobilized ureases and soluble urease were 2.82 × 102 μmol NH3 min−1 mg−1 protein, 2.65 × 102 μmol NH3 min−1 mg−1 protein and 2.85 × 102 μmol NH3 min−1 mg−1 protein, respectively. By contrast, reusability studies showed that chitosan–urease beads can be used almost 14 times with only 20% loss in original activity while alginate–urease beads lost 45% of activity after same number of uses. Immobilized urease showed improved stability when stored at 4 °C and t1/2 of urease was found to be 19 days, 80 days and 121 days, respectively for soluble, alginate and chitosan ureases. The immobilized urease was used to estimate the blood urea in clinical samples. The results obtained with the immobilized urease were quite similar to those obtained with the autoanalyzer®. The immobilization studies have a potential role in haemodialysis machines.  相似文献   

12.
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25oC, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 μmol NADH min−1 mg−1 protein, respectively, compared to 0.067 and 0.060 μmol NADH min−1 mg−1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a Km for methylglyoxal of 8.6 μM, the lowest compared to 46 μM for E1 and 586 and 552 μM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 μM for E1 and E2 isozymes, respectively.  相似文献   

13.
The effects of deoxycholate, taurocholate and cholate on transport and mucosal ATPase activity have been investigated in the rat jejunum in vivo using closed-loop and perfusion techniques.In the closed-loops, 5 mM deoxycholate selectively inactivated (Na+ + K+)-ATPase, and net secretion of Na+ induced by 2.5 mM deoxycholate was due to reduced lumen to plasma flux of the ion; deoxycholate (2.5 mM) produced marked inhibition of 3-O-methylglucose transport. Luminal disappearance rates of deoxycholate (60.5±2.9 % per g wet wt of gut) greatly exceeded those of taurocholate (4.3±1.0).In the perfusion studies 1 mM deoxycholate induced net secretion of water, Na+ and Cl, and inhibited active glucose transport; concomitantly “total” ATPase, (Na+ + K+)-ATPase, and Mg2+-ATPase were inhibited. At higher concentrations (5 mM) deoxycholate stimulated Mg2+-ATPase activity. Taurocholate and cholate at 1 mM had no effect on transport or (Na+ + K+)-ATPase. Mucosal lactase, sucrase and maltase activities were not affected by 1 mM deoxycholate, taurocholate or cholate.These results suggest that deoxycholate inhibits sodium-coupled glucose transport by inhibition of (Na+ + K+)-ATPase at the lateral and basal membranes of the epithelial cell, rather than from an effect at the brush-border membrane level.  相似文献   

14.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

15.
The total water content, the amount of non-freezable water, and the Na+ and K+ contents in the gastrocnemius muscle of albino mice with and without a solid tumor were determined. The spin-lattice relaxation time (T1) for the water protons in the two kinds of muscle were measured at six resonance frequencies ranging from 4.5 to 60 MHz over the temperature range +37 to −65°C. Quantitatively calculated T1 values are given. The difference in T1 for the two types of muscle at temperatures above −5°C is attributed to the difference in the distribution ratio of water between hydration and free states, and bears no direct relation to the concentration of Na+.  相似文献   

16.
In the threespine stickleback (Gasterosteus aculeatus) lactate dehydrogenase (LDH, EC 1.1.1.27) is encoded by three loci, Ldh-A, Ldh-B, and Ldh-C. LDH-B4 isoenzyme restricted its function to eye and brain, while LDH-C4 isoenzyme functions in the eye. In the Dead Vistula stickleback population, none of LDH loci is polymorphic. The LDH-B4 and LDH-C4 isoenzymes from the eye were purified to homogeneity to specific activity of 186 and 229 μmol NADH min−1mg−1, respectively, at 30°C. Some physico-chemical and kinetic properties revealed that eye LDH-C4 isoenzyme was more thermostable and had a higher affinity to pyruvate than LDH-B4 isoenzyme. Lower Km for pyruvate of eye LDH-C4 isoenzyme distinguishes it from fish LDH-C4 isoenzyme isolated from liver.  相似文献   

17.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

18.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

19.
An N-acetyl-β-d-hexosaminidase has been purified from primary wheat leaves (Triticum aestivum L.) by freeze-thawing, (NH4)2SO4 precipitation, methanol precipitation, gel filtration, cation exchange chromatography and affinity chromatography on concanavalin A-Sepharose. The activity of the purified preparations could be stabilised by addition of Triton X-100 and the enzyme was stored at -20°C without significant loss of activity. The enzyme hydrolysed pNP-β-d-GlcNAc (optimum pH 5.2, Km 0.29 mM, Vmax 2.56 μkat mg−1) and pNP-β-d-GalNAc (optimum pH 4.4, Km 0.27 mM, Vmax 2.50 μkat mg−1). Five major isozymes were identified, with isoelectric points in the range 5.13–5.36. All five isozymes possessed both N-acety-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activity. Inhibition studies and mixed substrate analysis suggested that both substrates are catalysed by the same active site. Both activities were inhibited by GlcNAc, 2-acetamido-2-deoxygluconolactone, GalNAc and the ions of mercury, silver and copper. The Kis for inhibition of N-acetyl-β-d-glucosaminidase activity were: GlcNAc (15.3 mM) and GalNAc (3.4mM). For inhibition of N-acety-β-d-galactosaminidase activity the corresponding values were: GlcNAc (18.2 mM) and GalNac (2.5 mM). The enzyme was considerably less active at releasing pNP from pNP-β-d-(GlcNAc)2 and pNP-β-d-(GlcNAc)3 than from pNP-β-d-GlcNAc. The ability of the N-acetyl-β-d-hexosaminidase to relase GlcNAc from chitin oligomers (GlcNAc)2 (optimum pH 5.0) and (GlcNAc)3−6 (optimum pH 4.4) was also low. Analysis of the reaction products revealed that the initial products from the hydrolysis of (GlcNAc)n were predominantly (GlcNAc)n−1 and GlcNAc.  相似文献   

20.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号