首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diverse rhizobia able to nodulate Biserrula pelecinus evolved following in situ transfer of nodA and nifH from an inoculant to soil bacteria. Transfer of these chromosomal genes and the presence of an identical integrase gene adjacent to a Phe tRNA gene in both the inoculant and recipients indicate that there was lateral transfer of a symbiosis island.  相似文献   

2.
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N(2)-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.  相似文献   

3.
The naphthalene-degrading activity of a Pseudomonas sp. strain isolated from a creosote-contaminated soil was shown to be encoded by the IncP9 plasmid pNF142 by transfer to Pseudomonas putida KT2442. The effects of the inoculant strain KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community were studied in microcosms with the following treatments: (I) soil, (II) soil with naphthalene, (III) soil with naphthalene and inoculated with KT2442 (pNF142). The inoculant became the dominant bacterial population in treatment (III) as evidenced by cultivation and denaturing gradient gel electrophoresis (DGGE) analysis. The bacterial DGGE profiles revealed drastically reduced complexity due to the numerical dominance of the inoculant. However, group-specific fingerprints (beta-proteobacteria, actinobacteria) that excluded KT2442 (pNF142) showed less severe changes in the bacterial community patterns. A major effect of naphthalene on the soil bacterial community was observed in treatment (II) after 21 days. Two dominant bands appeared whose sequences showed the highest similarity to those of Burkholderia sp. RP007 and Nocardia vinaceae based on 16S rRNA gene sequencing. These bands were less intense in treatment (III). The increased abundance of RP007-like populations due to naphthalene contamination was also confirmed by PCR amplification of the phnAc gene. The nahAc and nahH genes were detected in DNA and cDNA only in treatment III. Although the inoculant strain KT2442 (pNF142) showed good survival and expression of genes involved in naphthalene degradation, this study suggests that KT2442 (pNF142) suppressed the enrichment of indigenous naphthalene degraders.  相似文献   

4.
To improve the nitrogen fixation, legume crops are often inoculated with selected effective rhizobia. However, there is large variation in how well the inoculant strains compete with the indigenous microflora in soil. To assess the success of the inoculant, it is necessary to distinguish it from other, closely related strains. Methods used until now have generally been based either on fingerprinting methods or on the use of reporter genes. Nevertheless, these methods have their shortcomings, either because they do not provide sufficiently specific information on the identity of the inoculant strain, or because they use genetically modified organisms that need prior authorization to be applied in the field or other uncontained environments. Another possibility is to target a gene that is naturally present in the bacterial genomes. Here we have developed a method that is based on amplicon sequencing of the bacterial housekeeping gene rpoB, encoding the beta-subunit of the RNA polymerase, which has been proposed as an alternative to the 16S rRNA gene to study the diversity of rhizobial populations in soils. We evaluated the method under laboratory and field conditions. Peanut seeds were inoculated with various Bradyrhizobium strains. After nodule development, DNA was extracted from selected nodules and the nodulating rhizobia were analysed by amplicon sequencing of the rpoB gene. The analyses of the sequence data showed that the method reliably identified bradyrhizobial strains in nodules, at least at the species level, and could be used to assess the competitiveness of the inoculant compared to other bradyrhizobia.  相似文献   

5.
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N2-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.  相似文献   

6.
联合固氮菌叶面接种剂的优化及其在玉米叶际的定殖   总被引:1,自引:1,他引:0  
【背景】联合固氮菌由于不具有宿主专一性,在土壤、叶际中广泛存在,对生态系统氮素供应有着重要贡献,它还可以通过分泌生长激素等间接作用促进植物生长,可作为重要的农业生产菌剂。土壤接种剂由于受土著微生物的竞争和土壤抑菌物质等的影响,接种效果不稳定,难以推广使用。相比于土壤环境,叶际生境相对简单且表面积巨大,进行叶际接种是固氮菌剂推广应用的一个新思路。【目的】优化联合固氮菌菌株W12接种添加剂,制备液体接种剂并研究其在玉米叶际的定殖效果。【方法】对菌株W12进行菌落PCR测序,构建系统发育树并确定分类地位。分别在培养液中添加不同浓度梯度的羧甲基纤维素(Carboxymethyl cellulose,CMC)和甘油(Glycerol,Gly),测量菌株W12生长曲线和固氮酶活性,优化添加剂浓度并制备液体接种剂,对接种剂的有效保存时间进行检测。将接种剂喷洒到玉米叶际,测量其对玉米产量和植株含氮量的影响,并通过低氮培养基进行回收计数。【结果】固氮菌菌株W12的16S r RNA基因序列与变栖克雷伯氏菌(Klebsiella variicola)的相似性高达99%,在培养液中添加CMC和甘油对菌株W12的生长无明显促进和抑制效果,但均提高了固氮酶活性。添加甘油制备的接种剂在盆栽和大田玉米叶面喷施后,在玉米生长末期叶际回收到的W12类似菌分别为4.3×105 CFU/g叶片和1.7×105 CFU/g叶片,显著高于未接种的处理;而且大田玉米籽粒、茎部和叶片的含氮量高于不接种的对照处理。经过90 d贮藏后,4°C保存的接种剂剩余活菌数均高于1.0×108 CFU/m L。【结论】羧甲基纤维素和甘油的添加不仅有利于固氮菌液体接种剂在叶片的附着,并能显著提高联合固氮菌菌株W12的固氮酶活性,低温冷藏可保证液体接种剂的有效活菌数;液体接种剂在玉米叶际喷施后,菌株W12能够成功定殖,并显著提高玉米植株和籽粒含氮量。研究结果为固氮菌叶面接种剂的制备和应用,以及实现农业氮肥减施保产的目标提供了借鉴意义。  相似文献   

7.
Three strains of Streptococcus bovis, a homolactic bacterium capable of utilizing starch, were evaluated for growth kinetics and ability to decrease the pH of alfalfa silage. A selected strain was evaluated for its competitiveness as an inoculant with Enterococcus faecium, an organism used in inoculants, and for its ability to enhance the effect of a commercial inoculant. Testing was completed over three studies using wilted alfalfa (28 to 34% dry matter) ensiled into laboratory silos. Treatments were control, E. faecium, E. faecium and commercial inoculant, S. bovis, and S. bovis and commercial inoculant. Replicate silos were emptied and analyzed at 0.5, 1, 2, 4, 8, and 40 days for pH, fermentation products, and nitrogen fractions. S. bovis alone lowered the pH quicker and improved silage parameters early in the fermentation compared with E. faecium, the commercial inoculant, and control treatments. When combined with a commercial inoculant, S. bovis lowered pH more quickly than the commercial inoculant alone and E. faecium plus commercial inoculant. At 40 days, S. bovis combination had lower pH and ammonia nitrogen and acetate contents than the E. faecium combination. Starch in the silage was not utilized by S. bovis as had been anticipated. Results indicate that S. bovis was more effective than E. faecium as a silage inoculant and could enhance a commercial inoculant on low-dry-matter alfalfa.  相似文献   

8.
B A Jones  R E Muck    S C Ricke 《Applied microbiology》1991,57(10):3000-3005
Three strains of Streptococcus bovis, a homolactic bacterium capable of utilizing starch, were evaluated for growth kinetics and ability to decrease the pH of alfalfa silage. A selected strain was evaluated for its competitiveness as an inoculant with Enterococcus faecium, an organism used in inoculants, and for its ability to enhance the effect of a commercial inoculant. Testing was completed over three studies using wilted alfalfa (28 to 34% dry matter) ensiled into laboratory silos. Treatments were control, E. faecium, E. faecium and commercial inoculant, S. bovis, and S. bovis and commercial inoculant. Replicate silos were emptied and analyzed at 0.5, 1, 2, 4, 8, and 40 days for pH, fermentation products, and nitrogen fractions. S. bovis alone lowered the pH quicker and improved silage parameters early in the fermentation compared with E. faecium, the commercial inoculant, and control treatments. When combined with a commercial inoculant, S. bovis lowered pH more quickly than the commercial inoculant alone and E. faecium plus commercial inoculant. At 40 days, S. bovis combination had lower pH and ammonia nitrogen and acetate contents than the E. faecium combination. Starch in the silage was not utilized by S. bovis as had been anticipated. Results indicate that S. bovis was more effective than E. faecium as a silage inoculant and could enhance a commercial inoculant on low-dry-matter alfalfa.  相似文献   

9.
Abstract A genetically modified strain of the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum biovar viciae was used to inoculate a typical host, pea, and a control non-host cereal crop in the field. The inoculant was monitored for survival and spread from the site of application, and for genetic interactions with the native population. It could be identified by chromosomally located antibiotic resistance markers and additional markers conferred by the transposon Tn 5 inserted on its conjugative symbiotic plasmid. These markers facilitated enumeration of the strain on selective agar, enabling survival and spread to be monitored over a six year period. Although culturable cell numbers dropped two to three orders of magnitude after the first year, subsequently they remained around 102 viable cells per g soil, even in subplots where only the non-host cereals had been grown. However, peas did give the inoculant a small survival advantage compared with non-hosts. Soil cultivation appeared to play a major role in inoculant dissemination from the site of application. Transfer of the Tn 5 marker to other rhizobia could be monitored by screening for isolates with Tn 5 -encoded antibiotic resistance in the absence of the inoculant chromosomal markers. Over three years, more than 4000 pea root nodules were screened for indigenous rhizobia that had acquired the Tn 5 -marked symbiotic plasmid from the inoculant. None were detected, although overall about 2% of nodules contained the inoculant strain, and transfer of the Tn 5 -marked symbiotic plasmid to three out of four R. leguminosarum biovar viciae isolates from the field site could be demonstrated under laboratory conditions.  相似文献   

10.
A. CRESSWELL, L. SKØT AND A.R. COOKSON. 1994. The gene encoding the firefly luciferase enzyme ( luc ) was introduced to Rhizobium leguminosarum biovar trifolii strains with a view to using the resulting bioluminescent strains to study the survival of genetically-engineered rhizobia in soil microcosms. The genetically-engineered micro-organisms (GEMs) behaved similarly to their parent strains with respect to growth rate in laboratory media and in their symbiotic performance with their host plants. No gene transfer could be detected in laboratory mating experiments. When inoculated onto a non-sterile soil the population of the GEM declined sharply from an initial cell density of 2 times 1077 g-1 soil to approach a stable cell density of approximately 3 times 102 g-1 after 150 d. Direct photography of bioluminescent rhizobia enabled the detection of colonies as small as 0.1 mm in diameter without the need for transferring colonies onto filter paper. When a Rhizobium strain carrying the luc marker on a plasmid was used as inoculant it was possible to visualize differences in colonization of the rhizosphere of white clover and ryegrass by contact print and colour transparency films. The photographic detection methods described here demonstrate the possibilities of using bioluminescent rhizobia for assessing their survival in soil, and for looking at rhizosphere populations which may be an important site for potential gene transfer.  相似文献   

11.
To provide the necessary information for strain improvement and the development of competitive strains, characterization of some agronomically important inoculant Rhizobium strains specific for either alfalfa or berseem clover is an ongoing project in this laboratory. Plasmid DNA content and identification of symbiosis-controlling plasmids were previously determined. In this study, to determine their symbiotic competence and their apparent genetic diversity, plant tests and RFLP analysis of total DNAs were conducted. Symbiotic effectiveness varied significantly among the Rh. meliloti strains but not among the berseem clover symbionts. Only one strain, Rh. meliloti ARC 104, was symbiotically ineffective. RFLP analysis using a ribosomal RNA operon probe, with three different enzyme digests, produced four related groups which correlated with plasmid profiles. The use of a nifHD gene probe produced similar results which clustered the berseem clover microsymbionts but more clearly separated two distinct groups of Rh. meliloti. A cosmid clone, from a Rh. leguminosarum biovar trifolii T24 gene library, distinguished each strain. This new information will be useful in identifying and producing improved recombinant strains by plasmid transfer.  相似文献   

12.
Acacia mangium is a legume tree native to Australasia. Since the eighties, it has been introduced into many tropical countries, especially in a context of industrial plantations. Many field trials have been set up to test the effects of controlled inoculation with selected symbiotic bacteria versus natural colonization with indigenous strains. In the introduction areas, A. mangium trees spontaneously nodulate with local and often ineffective bacteria. When inoculated, the persistence of inoculants and possible genetic recombination with local strains remain to be explored. The aim of this study was to describe the genetic diversity of bacteria spontaneously nodulating A. mangium in Brazil and to evaluate the persistence of selected strains used as inoculants. Three different sites, several hundred kilometers apart, were studied, with inoculated and non-inoculated plots in two of them. Seventy-nine strains were isolated from nodules and sequenced on three housekeeping genes (glnII, dnaK and recA) and one symbiotic gene (nodA). All but one of the strains belonged to the Bradyrhizobium elkanii species. A single case of housekeeping gene transfer was detected among the 79 strains, suggesting an extremely low rate of recombination within B. elkanii, whereas the nodulation gene nodA was found to be frequently transferred. The fate of the inoculant strains varied depending on the site, with a complete disappearance in one case, and persistence in another. We compared our results with the sister species Bradyrhizobium japonicum, both in terms of population genetics and inoculant strain destiny.  相似文献   

13.
An assessment was made of the evolutionary relationships of soybean nodulating bacteria associated with legumes native to eastern Canada to identify potential new sources of soybean inoculant strains.Short season soybeans were used to selectively trap bacteria from root zone soils of four native legume species. Screening of more than 800 bacterial isolates from soybean root nodules by analysis of recA gene sequences followed by analyses of selected genotypes using six core and two symbiosis (nodC and nifH) gene sequences permitted identification of diverse taxa that included eight novel and four named Bradyrhizobium species as well as lineages attributed to the genera Afipia and Tardiphaga.Plant tests showed that symbionts related to four named species as well as a novel Bradyrhizobium lineage were highly efficient with regard to nitrogen fixation on soybeans relative to an inoculant strain.A new symbiovar (sv. septentrionalis) is proposed based on a group of four novel Bradyrhizobium spp. that possess distinctive nodC and nifH gene sequences and symbiotic characteristics.Evidence is provided for horizontal transfer of sv. septentrionalis symbiosis genes between novel Bradyrhizobium spp., a process that rendered recipient bacteria ineffective on soybeans.Diverse lineages of non-symbiotic and symbiotic Bradyrhizobium spp. co-occured within monophyletic clusters in a phylogenetic tree of concatenated core genes, suggesting that loss and/or gain of symbiosis genes has occurred in the evolutionary history of the bacterial genus.Our data suggest that symbiont populations associated with legumes native to eastern Canada harbour elite strains of Bradyrhizobium for soybean inoculation.  相似文献   

14.
The use of commercial arbuscular mycorrhizal (AM) inoculants is growing. However, we know little about how resident AM communities respond to inoculations under different soil management conditions. The objective of this study was to simulate the application of a commercial AM fungal inoculant of Glomus intraradices to soil to determine whether the structure and functioning of that soil’s resident AM community would be affected. The effects of inoculation were investigated over time under disturbed or undisturbed soil conditions. We predicted that the introduction of an infective AM fungus, such as G. intraradices, would have greater consequences in disturbed soil. Using a combination of molecular (terminal restriction length polymorphism analysis based on the large subunit of the rRNA gene) and classical methods (AM fungal root colonization and P nutrition) we found that, contrary to our prediction, adding inoculant to soil containing a resident AM fungal community does not necessarily have an impact on the structure of that community either under disturbed or undisturbed conditions. However, we found evidence of positive effects of inoculation on plant nutrition under disturbed conditions, suggesting that the inoculant interacted, directly or indirectly, with the resident AM fungi. The inoculant significantly improved the P content of the host but only in presence of the resident AM fungal community. In contrast to inoculation, soil disturbance had a significant negative impact on species richness of AM fungi and influenced the AM fungal community composition as well as its functioning. Thus, we conclude that soil disturbance may under certain conditions have greater consequences for the structure of resident AM fungal communities in agricultural soils than commercial AM fungal inoculations with G. intraradices.  相似文献   

15.
Previously, we found that genetically diverse rhizobia nodulating Lotus corniculatus at a field site devoid of naturalized rhizobia had symbiotic DNA regions identical to those of ICMP3153, the inoculant strain used at the site (J. T. Sullivan, H. N. Patrick, W. L. Lowther, D. B. Scott, and C. W. Ronson, Proc. Natl. Acad. Sci. USA 92:8985-8989, 1995). In this study, we characterized seven nonsymbiotic rhizobial isolates from the rhizosphere of L. corniculatus. These included two from plants at the field site sampled by Sullivan et al. and five from plants at a new field plot adjacent to that site. The isolates did not nodulate Lotus species or hybridize to symbiotic gene probes but did hybridize to genomic DNA probes from Rhizobium loti. Their genetic relationships with symbiotic isolates obtained from the same sites, with inoculant strain ICMP3153, and with R. loti NZP2213T were determined by three methods. Genetic distance estimates based on genomic DNA-DNA hybridization and multilocus enzyme electrophoresis were correlated but were not consistently reflected by 16S rRNA nucleotide sequence divergence. The nonsymbiotic isolates represented four genomic species that were related to R. loti; the diverse symbiotic isolates from the site belonged to one of these species. The inoculant strain ICMP3153 belonged to a fifth genomic species that was more closely related to Rhizobium huakuii. These results support the proposal that nonsymbiotic rhizobia persist in soils in the absence of legumes and acquire symbiotic genes from inoculant strains upon introduction of host legumes.  相似文献   

16.
An amylolytic Lactobacillus plantarum silage strain with the starch-degrading ability displayed by Lactobacillus amylovorus was developed. An active fragment of the gene coding for alpha-amylase production in L. amylovorus was cloned and integrated into the chromosome of the competitive inoculant strain L. plantarum Lp80 at the cbh locus. The alpha-amylase gene fragment was also introduced into L. plantarum Lp80 on an autoreplicative plasmid. Both constructions were also performed in the laboratory strain L. plantarum NCIB8826. All four recombinant strains secreted levels of amylase ranging from 23 to 69 U/liter, compared with 47 U/liter for L. amylovorus. Secretion levels were higher in L. plantarum NCIB8826 than in L. plantarum Lp80 derivatives and were higher in recombinant strains containing autoreplicative plasmids than in the corresponding integrants. The L. plantarum Lp80 derivative containing the L. amylovorus alpha-amylase gene fragment integrated into the host chromosome secreted alpha-amylase to a level comparable to that of L. amylovorus and was stable over 50 generations of growth under nonselective conditions. It grew to a higher cell density than either the parent strain or L. amylovorus in MRS medium containing a mixture of starch and glucose as the fermentable carbohydrate source. This recombinant alpha-amylolytic L. plantarum strain would therefore seem to have considerable potential as a silage inoculant for crops such as alfalfa, in which water-soluble carbohydrate levels are frequently low but starch is present as an alternative carbohydrate source.  相似文献   

17.
The survival and colonization patterns of Pseudomonas putida PRD16 and Enterobacter cowanii PRF116 in the rhizosphere of greenhouse-grown tomato plants and the effects of their inoculation on the indigenous bacterial community were followed by selective plating, molecular fingerprinting, and confocal laser scanning microscopy (CLSM) over 3 weeks. Both strains, which showed in vitro antagonistic activity against Ralstonia solanacearum, were previously tagged with gfp. Seed and root inoculation were compared. Although plate counts decreased for both gfp-tagged antagonists, PRD16 showed a better survival in the rhizosphere of tomato roots independent of the inoculation method. Analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and CLSM confirmed the decrease in the relative abundance of the inoculant strains. Pronounced differences in the Pseudomonas community patterns for plants inoculated with PRD16 compared to the control were detected 3 weeks after root inoculation, indicating a longer-lasting effect. Analysis by CLSM showed rather heterogeneous colonization patterns for both inoculant strains. In comparison with seed inoculation, root inoculation led to a much better colonization as evidenced by all three methods. The colonization patterns observed by CLSM provide important information on the sampling strategy required for monitoring inoculant strains in the rhizosphere.  相似文献   

18.
Polyacrylamide-Entrapped Rhizobium as an Inoculant for Legumes   总被引:5,自引:3,他引:2       下载免费PDF全文
Pot experiments showed that Rhizobium japonicum cells entrapped in a polyacrylamide gel could be used as an inoculant for soybeans and compared favorably to laboratory-made peat base inoculant containing the same bacterial strain.  相似文献   

19.
A dry granular inoculant of Rhizobium was prepared from sodium alginate and peralite. High numbers of two groundnut (Arachis hypogaea) Rhizobium strains, NC 92 and TAL 1000 used to prepare inoculants survived in dry granules beyond 180 days. The viable counts were 9.72 and 9.91 log10 rhizobia g-1 of dry granules for NC 92 and TAL 1000, respectively compared to 8.0 log10 rhizobia g-1 of peat inoculant for NC 92 at the end of six months storage. The granular inoculant was free from contaminants. In a pot culture experiment the granular inoculant applied to the soil gave similar results when seeds were dressed with a peat inoculant; nodulation and growth of groundnut were similar. The major advantage of this inoculant is that, it can be stored in a dry state without losing much viability.  相似文献   

20.
The growth and survival of strains of Streptomyces lividans and S. violaceolatus in sterile and nonsterile soil was investigated by using inoculated soil microcosms run as batch systems. It was evident that, after an initial short mycelial growth phase of 2 to 3 days, sporulation occurred and inoculants survived as spores. The transfer of a high-copy-number, self-transmissible plasmid, pIJ673, was detected by using intra- and interspecific crosses. The initial detection of transconjugants correlated with the development of the mycelial state of the inoculants (as confirmed by scanning electron microscopy) after 2 days of incubation. Subsequent spread of the plasmid was attributed to spread within existing mycelium followed by sporulation. In natural soil, inoculant numbers remained constant or declined, but plasmid transfer was readily detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号