首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

2.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

3.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   

4.
Using the compartmental analysis the unidirectional Na+ fluxesin cortical cells of barley roots, the cytoplasmic and vacuolarNa+ contents Qc and Qv, and the trans-root Na+ transport R'have been studied as a function of the external Na+ concentration.Using the re-elution technique the effect of low K+ concentrationson the plasmalemma efflux co of Na+ (K+-Na+ exchange) and onR' was investigated at different Na+ concentrations and correspondinglydifferent values of the cytoplasmic sodium content Qc. The relationof the K+-dependent Na+ efflux coK+-dep to Qc or to the cytoplasmicNa+ concentration obeyed Michaelis-Menten kinetics. This isconsistent with a linkage of co, K+-dep to K+ influx by a K+-Na+exchange system. The apparent Km corresponded to a cytoplasmicNa+ concentration of 28 mM at 0·2 mM K+ and about 0·2mM Na+ in the external solution. 0·2 mM K+ stimulatedthe plasma-lemma efflux of Na+ and inhibited Na+ transport selectivelyeven in the presence of 10 mM Na+ in the external medium showingthe high efficiency of the K+-Na+ exchange system. However,co, K+-dep was inhibited at 10 mM Na1 compared to lower Na1concentrations suggesting some competition of Na1 with K1 atthe external site of the exchange system. The effect of theNa+ concentration on Na1 influx oc is discussed with respectto kinetic models of uuptake.  相似文献   

5.
Non-selected and Na2SO-, K2SO4- or KCl-selected callus culturesof Vaccinium corymbosum L. cv. Blue Crop were grown on mediasupplemented with 0, 25 and 50 mM Na2SO4 (non-selected and Na2SO(-selectedonly), 0, 25 and 50mMK2SO4 (non-selected and K2SO4-selectedonly) or 0, 50 and 100 mM KCl (non-selected and KCl-selectedonly). On all media, growth of selected callus (on a fresh-weightor dry-weight basis) was greater than that of non-selected callus,and selected callus grew optimally on the level and type ofsalt on which it was selected. Selected callus was friable andmaintained a higher f. wt:d. wt ratio. Tissue water potentialin selected callus was more negative than in non-selected callus. Flame photometry and chloridometry showed Na+, K+ and Claccumulated in callus to concentrations equal to or greaterthan the initial concentration in the medium. Turbidometry showedthat tissue SO42- concentration was lower than the concentrationin the medium. In most cases selected callus accumulated moreNa+, Ksup, SO42– or Cl than non-selected callus.Vacuolar ion concentration was measured by electronprobe X-raymicroanalysis, and on most media selected callus had highervacuolar ion concentrations than non-selected callus. SO42–and Cl were accumulated in the vacuoles at concentrationshigher than the external medium, but vacuolar Na+ concentrationdid not reach external concentration on Na2SO4 and on potassiumsalts was maintained between 12 and 17 mM. Vacuolar K+ concentration(approx. 142–191 mM on no salt) decreased on Na2SO4 andincreased on K2SO4 and KCl. There was no precise correlation between total or specific ionaccumulation (Na+, K+, SO42– and Cl and fresh-weightyield. Results suggest that selection results in adaptationin response to decreased water potential of the medium. Vaccinium corymbosum, blueberry, electronprobe X-ray microanalysis, callus, in vitro selection, salt tolerance, KCl, K2SO4, Na2SO4  相似文献   

6.
Sodium efflux from 22Na+-loaded root tips root tips of Hordeumvulgare L. was markedly increased by replacing 10mM Na2SO4 inthe washing solution by K2SO4 with the same electrical conductivity.This increase was inhibited by both an uncoupler and an inhibitorof oxidative phosphorylation but not by ouabain. Potassium ionsdid not enhance Na+ efflux in the presence of a rapidly absorbedcounter anion, such as Cl, instead of . Efflux of 22Na+ could also be enhanced by a low pH in theabsence of K+; this was prevented by uncouplers, but not byan inhibitor of the mitochondrial ATPase. It seems that K+ indirectly enhances Na+ efflux. It is suggestedthat metabolic K+ uptake in excess of the counter anion resultsin a proton gradient across the plasmalemma (acid outside) inducingH+/Na+ antiport.  相似文献   

7.
Root tips of the wilty pepper mutant scarbrous diminutive accumulateless rubidium than those of the normal genotype. This phenomenonwas evident in root tips excised from plants maintained for2 d in CaSO4 solution (low salt plants), especially in the lowerexternal concentration range (0.1– 1.0 mM) of RbCl. Theefflux rate of Rb+ from mutant root tips was twice as high asin normal root tips. These results indicate that the ability of the mutant rootsto absorb and accumulate Rb+ and K+ is impaired. This defectcould be a consequence of either an impaired Na+/K+ carriersystem, or increased leakiness of mutant membranes, or both. The fact that the normal roots can accumulate Rb+ much fasterthan mutant roots supports the first alternative, i.e. thatthe high affinity carrier system was impaired in the mutantroots. However, the higher efflux rate of Rb+ from the mutantroots suggests that membrane leakiness was also affected.  相似文献   

8.
Cytosolic potassium controls CFTR deactivation in human sweat duct   总被引:1,自引:0,他引:1  
Absorptive epithelial cells must admit large quantities of salt (NaCl) during the transport process. How these cells avoid swelling to protect functional integrity in the face of massive salt influx is a fundamental, unresolved problem. A special preparation of the human sweat duct provides critical insights into this crucial issue. We now show that negative feedback control of apical salt influx by regulating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel activity is key to this protection. As part of this control process, we report a new physiological role of K+ in intracellular signaling and provide the first direct evidence of acute in vivo regulation of CFTR dephosphorylation activity. We show that cytosolic K+ concentration ([K+]c) declines as a function of increasing cellular NaCl content at the onset of absorptive activity. Declining [K+]c cause parallel deactivation of CFTR by dephosphorylation, thereby limiting apical influx of Cl (and its co-ion Na+) until [K+]c is stabilized. We surmise that [K+]c stabilizes when Na+ influx decreases to a level equal to its efflux through the basolateral Na+-K+ pump thereby preventing disruptive changes in cell volume. electrolytes; phosphatases; protein kinase A; cystic fibrosis transmembrane conductance regulator; epithelial Na+ channel  相似文献   

9.
Excised leaves of Elodea densa rapidly absorb methylamine1 fromdilute solutions (up to 2.0 mM). The influx isotherm is hyperbolic,with a K? of approximately 160 µM. Influx is reduced followingtransfer of leaves from light to darkness, and at low temperature.Low concentrations of ammonia reduce the influx greatly, apparentlyby competition between NH+4 and CH3NH+3, but K+ and Na+ havelittle effect, nor has removal of Cl. Influx is veryinsensitive to external pH over the range 5.0 to 9.0, with usuallya small increase between pH 9.0 and 10.0. When leaves are pretreatedin solutions containing nitrogenous compounds subsequent influxcan be decreased (by ammonia), unchanged (by methylamine) oreven increased (by arginine, proline and imidazol). Influx of methylamine and ammonia lowers influx of K+ (Rb+)and of Cl and increases efflux of K+ into solutions initiallyfree of K+. Fluxes of Ca++ are not affected and there is netefflux of H+ into unbuffered solutions. The results show that uptake of methylamine and ammonia underthese conditions is primarily by transport (uniport) of CH3NHJand NHJ and that diffusion of CH3NH+3 and NH+3 is insignificant.In Elodea, unlike some of the plants that have been previouslystudied, maintenance of charge-balance during transport of CH3NH+3and NH+3 appears to involve accumulation of organic acid anions.  相似文献   

10.
Internal Factors Regulating Nitrate and Chloride Influx in Plant Cells   总被引:14,自引:0,他引:14  
The primary factor determining the observed decrease in activeC1 influx during salt accumulation in carrot and barleyroot cells has been shown to be the concentration of C1+ NO3 in the vacuole. The relationship between C1 influx and the vacuolar concentrationsof various substances was examined after the tissues had accumulatedions from various salt solutions. After accumulating K+ malate,C1 influx was not reduced, but after accumulating C1or NO3 salts, C1 influx was reduced by up to 90per cent. Considering all treatments, C1 influx was notcorrelated with the vacuolar concentration of K+, Na+, (K++Na+),reducing sugars, malate, C1, or NO3, nor withthe cellular osmotic pressure. The correlation coefficient betweenCl influx and log (C1 + NO3 concentrationin the vacuole) was highly significant, and accounted for allthe variation in C1 influx in this experiment. Net NO3 influx is similarly reduced by a high C1concentration in the vacuole. External Cl and NO3have quantitatively different, apparently competitive, effectson C1 influx. These differ from the apparently negative-feedbackeffects of C1 and NO3 in the vacuole, which arequantitatively similar. Decreasing the internal hydrostatic pressure by raising theexternal osmotic pressure increased active K+ influx in Valoniaventricosa, but had no effect on C1 or K+ influx in carrotor maize root cells. Cl influx is not related to thereducing sugar concentration during ageing drifts in excisedcarrot root tissue. Acetazolamide did not inhibit C1 influx to carrot tissue. The implications of this type of negative feedback regulation,and the relationship between C1 and NO3 transportare discussed.  相似文献   

11.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

12.
Barley varieties are known to differ in the extent of Na+ andCl accumulation in leaves when grown in saline soil orhydroponic culture. In particular, the cv. Chevron accumulatesmore Na+ than the more salt-tolerant cv. CM67, and has lowerleaf K+ concentrations. When salt was applied as a spray tothe leaves, CM67 accumulated more Na+ than Chevron, and theselection Sinis 27 (from a landrace collected on the Sinis Peninsulaof Sardinia) accumulated more Na+ than Sinis 28. In some casesleaf K+ concentrations decreased in response to high concentrationsof salt sprayed on to the leaves. Accumulation of Na+ was greaterin the 4th leaf than in the flag leaf. Added CaCI2 had oppositeeffects when added to the salt applied to the soil or to thesaline spray. In the soil, CaCI2 reduced Na+ uptake; appliedto the leaf it increased Na+ uptake. Pre-wetting the leavesbefore the salt spray, or washing the leaves with non-salinewater 1 h after the salt spray, reduced the uptake of Na+ andCl. It is clear that tolerance to salt applied as saltspray or in the soil are different characteristics. Key words: Barley, salt, foliar uptake, calcium  相似文献   

13.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

14.
To examine effects of cytosolicNa+, K+, and Cs+ on the voltagedependence of the Na+-K+ pump, we measuredNa+-K+ pump current (Ip)of ventricular myocytes voltage-clamped at potentials(Vm) from 100 to +60 mV. Superfusates weredesigned to eliminate voltage dependence at extracellular pump sites.The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip)of 80 mM and a K+ concentration from 0 to 80 mM or withsolutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When[Na]pip was 80 mM, K+ in pipette solutionshad a voltage-dependent inhibitory effect on Ipand induced a negative slope of theIp-Vm relationship. Cs+ in pipette solutions had an effect onIp qualitatively similar to that ofK+. Increases in Ip with increasesin [Na]pip were voltage dependent. The dielectriccoefficient derived from[Na]pip-Ip relationships at thedifferent test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free.

  相似文献   

15.
The neuronal K-Cl cotransporter isoform (KCC2) was functionallyexpressed in human embryonic kidney (HEK-293) cell lines. Two stablytransfected HEK-293 cell lines were prepared: one expressing anepitope-tagged KCC2 (KCC2-22T) and another expressing theunaltered KCC2 (KCC2-9). The KCC2-22T cells produced aglycoprotein of ~150 kDa that was absent from HEK-293 control cells.The 86Rb influx in both cell lineswas significantly greater than untransfected control HEK-293 cells. TheKCC2-9 cells displayed a constitutively active86Rb influx that could beincreased further by 1 mMN-ethylmaleimide (NEM) but not by cellswelling. Both furosemide [inhibition constant (Ki) ~25µM] and bumetanide (Ki~55 µM) inhibited the NEM-stimulated 86Rb influx in the KCC2-9cells. This diuretic-sensitive86Rb influx in theKCC2-9 cells, operationally defined as KCC2 mediated, required external Clbut not external Na+ and exhibiteda high apparent affinity for externalRb+(K+)[Michaelis constant(Km) = 5.2 ± 0.9 (SE) mM; n = 5] but alow apparent affinity for externalCl(Km >50 mM). Onthe basis of thermodynamic considerations as well as the unique kineticproperties of the KCC2 isoform, it is hypothesized that KCC2 may servea dual function in neurons: 1) themaintenance of low intracellularCl concentration so as toallow Cl influx vialigand-gated Cl channelsand 2) the buffering of externalK+ concentration([K+]o) in the brain.

  相似文献   

16.
Unidirectional fluxes and the cytoplasmic and vacuolar contentsof potassium and sodium in root cells of intact barley seedlings(Hordeum vulgare L., cv. Villa) were determined by use of compartmentalanalysis. In addition, the net vacuolar accumulation Jcv andthe xylem transport øcx of K+ and Na+ were measured.Both of these data were needed for the evaluation of the effluxdata. Fluxes and compartmental contents of K+ and Na+ were comparableto data obtained with excised roots. The effect of the shoot-to-rootratio—as varied by partial excision of the seedlings seminalroots—on the fluxes and contents was investigated. Highershoot-to-root ratios induced an increase in xylem transport,in plasmalemma influx, and also in the cytoplasmic content ofK+ and Na+. With potassium the plasmalemma efflux was almostunaltered while the tonoplast fluxes and vacuolar content weredecreased (in presence of Na+). With sodium, on the other hand,the plasmalemma efflux and the tonoplast fluxes were also increasedin the plants having one root and a high shoot-to-root ratio.These changes occurred even under conditions of low humidity,when transpiration was low and guttation occurred. The latterwas also increased at the high shoot-to-root ratio. The observedchanges could be due to a relieved feedback control of ion fluxesby the shoot and mediated in part by a relatively higher supplyof photosynthates in the plants having one root In addition,hormonal signals were suggested to participate. In particulara possibly decreased level of cytokinins in the plants havingonly one root could contribute to the signal. The observed changesappear to be responses of the plant to an alteration that canoccur under natural conditions when the root system is damaged.  相似文献   

17.
Cytoplasmic concentration of Mg2+([Mg2+]i) was measured with a fluorescentindicator furaptra in ventricular myocytes enzymatically dissociatedfrom rat hearts (25°C). To study Mg2+ transport acrossthe cell membrane, cells were treated with ionomycin inCa2+-free (0.1 mM EGTA) and high-Mg2+ (10 mM)conditions to facilitate passive Mg2+ influx. Rate of riseof [Mg2+]i due to the net Mg2+influx was significantly smaller in the presence of 130 mMextracellular Na+ than in its absence. We also tested theextracellular Na+ dependence of the net Mg2+efflux from cells loaded with Mg2+. After[Mg2+]i was raised by ionomycin and highMg2+ to the level 0.5-0.6 mM above the basal value(~0.7 mM), washout of ionomycin and lowering extracellular[Mg2+] to 1.2 mM caused rapid decline of[Mg2+]i in the presence of 140 mMNa+. This net efflux of Mg2+ was completelyinhibited by withdrawal of extracellular Na+ and waslargely attenuated by imipramine, a known inhibitor of Na+/Mg2+ exchange, with 50% inhibition at 79 µM. The relation between the rate of net Mg2+ efflux andextracellular Na+ concentration([Na+]o) had a Hill coefficient of 2 and[Na+]o at half-maximal rate of 82 mM. Theseresults demonstrate the presence of Na+ gradient-dependentMg2+ transport, which is consistent withNa+/Mg2+ exchange, in cardiac myocytes.

  相似文献   

18.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

19.
Measurements of Ion Concentrations and Fluxes in Dunaliella parva   总被引:2,自引:0,他引:2  
Measurements of K+, Na+, and Cl were made on a halotolerantstrain of Dunaliella growing at 500 mM NaCl, 25 ?C, and a relativelylow light intensity (6000 Lx). Much effort was spent in searchingfor a means of measuring the extracellular volume of fluid trappedbetween the cells of centrifuged pellets. All of the sugarstried as markers were rejected because they were found to bedigested in the cell suspension. The most suitable marker wasfound to be [14C]polyethylene glycol2 (mol. wt. 4000); althoughthis substance was apparently adsorbed to the cell exterior,it was found possible to correct for adsorption and then obtaina reasonable figure for the trapped fluid. The final concentrationsof cell K+ and Na+ were 128 ? 53 mM and 131 ? 117 mM respectively.Cl balanced the sum of K+ Na+. Influxes of 22Na+, 42K+,and 36C1 were measured in cells in which the ions werein the steady state. Averages of 610 and 6.6 nmol m–2s–1 were obtained for Na+ and K+ respectively. Clinflux was divided into 2 phases with values of 1540 and 178mmol m–2 s–1. The faster influx was considered tobe across the outer cell membrane. The membrane responsiblefor the slower influx has not been identified. By comparingvalues of the potential difference calculated from the Nernstand Goldman equations, it was concluded that Na+ and K+ areprobably controlled by active mechanisms, whereas cell Clis likely to be at thermodynamic equilibrium with the medium.  相似文献   

20.
Experiments were done to determine if the spontaneous recoveryof non-growing segments of corn root (Zea mays L.) from excisioninjury is dependent on auxin. Washing the segments with 5 runindoleacetic acid (IAA) for 2 to 4 hours gave a small but significantincrease in K+ (86Rb) influx, used here as a parameter reflectingrecovery of electrogenie H+-efflux pumping. This promotive effectwas obtained only after an hour of washing, and was sustainedby 100 nm gibberellic acid (GA3). Any early responses to auxinwere obscured by an adverse reaction of the root cells to externalIAA which resulted in a transitory inhibition of H+ pumpingand K+ influx. Pretreatment of excised root tips with 10 µM IAA in thegrinding medium protected a plasmalemma-enriched fraction ofthe microsomes during isolation, giving increased uncoupler-sensitiveATPase activity. Non-growing root tissue thus shows three responses to auxin:an adverse reaction at the outer surface of the plasmalemmawhich blocks H+ pumping; a protective or restorative effecton the H+-ATPase; an increased capacity for K+ influx duringthe developmental phase of washing, which is augmented by thepresence of GA3. (Received March 31, 1986; Accepted September 8, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号