首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract: The concentrations of S -adenosyl- l -methionine (SAM), S -adenosyl- l -homocysteine (SAH), and adenosine (Ado) were determined in whole brain and rat brain regions by HPLC. The whole brain contains, respectively, 22 nmol, 1 nmol, and 64 nmol of SAM, SAH, and Ado per g of wet tissue. Their distribution indicated that SAM and SAH levels are highest in brainstem, whereas the Ado level is highest in cortex. With aging the SAM concentrations decrease in whole brain, brainstem, and hypothalamus (–25%) and SAH levels increase by 90% in striatum and by 160% in cerebellum, while Ado levels are increased in all regions by 100–180%.  相似文献   

2.
Adenosine (Ado) kinase (ADK; ATP:Ado 5' phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-L-homo-cysteine (SAH) produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling.  相似文献   

3.
The hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and adenosine (Ado) in the rat were examined diurnally and as a function of fasting. Ado concentrations increased continuously throughout the fasting period; concentrations after 2 days of fasting were 7.5-fold higher than control values. Diurnally, the concentration of Ado was highest during the light hours. SAM and the ratio of SAM/SAH were reduced greater than 50% due to fasting and exhibited a significant daily rhythm which appeared to be related to dietary methionine availability. Hepatic SAM concentrations decreased continuously during the light hours and increased during the dark period to levels 7.3-fold greater than the lowest light values. The concentration of SAH was altered in a similar fashion yet to a much lesser degree such that the ratio of SAM/SAH paralleled the changes in the concentration of SAM. The SAM/SAH ratio exhibited a 4.5-fold difference between the peak and nadir values.  相似文献   

4.
PRODUCT INHIBITION OF RAT BRAIN HISTAMINE-N-METHYLTRANSFERASE   总被引:1,自引:1,他引:0  
Abstract— The inhibition of S -adenosylmenthionine: histamine- N -methyltransferase (EC 2.1.1.8; HMT) by its products, 3-methylhistamine (3-MetHm) and S -adenosyl- l -homocysteine (SAH), was examined using a preparation of the enzyme which was partially purified from rat brains. SAH was found in in vitro experiments, to be a competative inhibitor of HMT in relation to S -adenosyl- l -methionine (SAM), with a K i= 5.6 μM. SAH was shown to be a non-competitive inhibitor with respect to histamine (Hm) ( K i= 5.0 μM). The K m's for SAM and Hm were 10.2 and 3.0 μM respectively. On the other hand, 3-MetHm was determined to be a non-competitive inhibitor of HMT with respect to Hm ( K i= 8.7 μM) and an uncompetitive inhibitor with respect to SAM ( K i= 9.6 μM). These results suggest that the addition of the substrate to, and the release of products by, HMT occurs sequentially. In the nomenclature Of C leland (1963) the reaction is seemingly of the 'ordered Bi-Bi' type.  相似文献   

5.
An adenosine-sensitive (Ados) mutant of baby hamster kidney (BHK) cells, ara-S10d, when treated with a toxic concentration of adenosine (Ado), displayed a substantial elevation of S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), and methylthioadenosine (MTA). Wild-type BHK cells treated with the same concentration of Ado (not toxic to these parental cells) produced an elevation of SAH 1.5 times higher than that of ara-S10d cells without a concurrent elevation of SAM or MTA. Inhibition of methylation of DNA and tRNA is greater in ara-S10d cells treated with Ado than that of similarly treated wild-type cells. This inhibition was correlated with the enhanced Ado toxicity, suggesting inhibition of methylation as a possible causal factor for the great increase in Ado sensitivity. Inhibition of methylation may be due to the elevated level of MTA and not solely to the elevation of SAH, a well-known potent inhibitor of numerous methyltransferases.  相似文献   

6.
7.
Human S-adenosyl-homocysteine hydrolase (SAHH, E.C.3.3.1.1) has been considered to be an attractive target for the design of medicines to treat human disease, because of its important role in regulating biological methylation reactions to catalyse the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine (Ado) and l-homocysteine (Hcy). In this study, SAHH protein was successfully cloned and purified with optimized, Pichia pastoris (P. pastoris) expression system. The biological activity results revealed that, among the tested compounds screened by ChemMapper and SciFinder Scholar, 4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol (coniferyl alcohol, CAS: 458-35-5, ZINC: 12359045) exhibited the highest inhibition against rSAHH (IC50=?34?nM). Molecular docking studies showed that coniferyl alcohol was well docked into the active cavity of SAHH. And several H-bonds formed between them, which stabilized coniferyl alcohol in the active site of rSAHH with a proper conformation.  相似文献   

8.
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.  相似文献   

9.
Summary Adenosine nucleosidase (EC 3.2.2.7), which catalyses the irreversible hydrolysis of adenosine to adenine and ribose, has been isolated and purified about 40-fold from leaves of spinach beet (Beta vulgaris L.). The enzyme appeared to be specific for adenosine only among the naturally-occurring nucleosides, but comparable activity was also found with adenosine N-oxide. Adenosine hydrolysis, which had an optimum at pH 4.5, did not require phosphate ions nor was it stimulated by their presence. The Michaelis constant for this substrate was 11 M. Whereas the rate of adenosine hydrolysis was unaffected by DL-homocysteine, L-methionine and ribose, it was sensitive to the presence of adenine, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, AMP and deoxyadenosine. The role of this enzyme in plant metabolism is discussed.Abbreviations BSA bovine serum albumin - SAH S-adenosyl-L-homocysteine - SAM S-adenosyl-L-methionine  相似文献   

10.
Methylation reactions are involved in the biosynthesis of various natural molecules, in which S-adenosyl-L-methionine (SAM) acts as the principal biological methyl donor. The limited availability of SAM often affects the biosynthesis of methylated metabolites in cells, especially when heterologous SAM-mediated methyltransferases are employed. To solve this problem, a methyl supply system driven by betaine was developed in this study to enhance SAM availability in cells. A reconstructed methionine cycle was designed in E. coli using betaine as the methyl source by introducing betaine-homocysteine methyltransferase. Ferulic acid served as a model product was used to test the efficiency of methyl supply system. ATP is a co-factor for SAM biosynthesis and a pathway for ATP regeneration from adenosine was introduced to maintain the stability of the adenylate pool. After testing two different S-adenosyl-L-homocysteine (SAH) hydrolysis pathways, the optimized SAHase pathway was adopted for converting SAH back to homocysteine (Hcy). Thus, a methyl supply system was developed which increased SAM availability and therefore improved the titer and productivity of ferulic acid by 12.6-fold and 15.9-fold, respectively. The system was also applied successfully for other methyltransferase-catalyzed reactions. This work provides an efficient methyl supply system for enhanced production of methylated chemicals using betaine as the methyl source.  相似文献   

11.
12.
S‐adenosyl‐l ‐methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum ‘Bonaparte’), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1‐MCP treatment affects SAM usage by the three major SAM‐associated pathways. The 1‐MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1‐(malonylamino)cyclopropane‐1‐carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1‐MCP‐treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1‐MCP‐treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S‐adenosyl‐l ‐homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1‐MCP‐treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.  相似文献   

13.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAM decreases DNA decreases metDNA increases SAH increases (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase-SAH-DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

14.
Homocysteine is a sulfur-containing, nonproteinogenic, neurotoxic amino acid biosynthesized during methyl cycles after demethylation of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) and subsequent hydrolysis of SAH into homocysteine and adenosine. Formed homocysteine is either catabolized into cystathionine (transsulfuration pathway) by cystathionine β-synthase, or remethylated into methionine (remethylation pathway) by methionine synthase. To demonstrate the specificity of Ras-elicited effects on the activity of methyl cycles, wild-type pheochromocytoma PC12, mutant oncogenic rasH gene (MVR) expressing PC12 pheochromocytoma and normal c-rasH stably transfected M-CR3B cells were incubated with the Nω-nitro-l-arginine methyl ester (l-NAME), and manumycin, (inhibitors of nitric oxide synthase and farnesyltransferase, respectively). We have found that l-NAME significantly changes the SAM/SAH ratio in both MCR and MVR cells. Moreover, these alterations have reciprocal character; in the MCR cells, the SAM/SAH ratio was raised, whereas in the MVR cells this ratio was decreased. We conclude that depletion of endogenous NO with l-NAME increased the production of SAH only in cells with mutated oncogenic RasH, possibly through enhancement of production of reactive oxygen species (ROS). Oxidative stress can increase cystathionine β-synthase activity that switches methyl cycles from remethylation into transsulfuration pathway to maintain the intracellular glutathione pool (essential for the redox-regulating capacity of cells) via an adaptive process.  相似文献   

15.
Abstract— Brain cortices or bulk-isolated neuronal cell bodies prepared from cortices of 8-day old male rats were used as the source of a l-methyl adenine-specific tRNA methyltransferase (tRNA-AMT). Ammonium sulfate fractionation and chromatography on spheroidal hydroxylapatite and Sephadex G-200 yielded an 80-fold purified enzyme, as determined by using E. coli bulk tRNA as substrate. The kinetic parameters of tRNA-AMT for the substrate S -adenosyl- l -methionine (SAM) ( K m= 6 μM) and the inhibitor, S -adenosyl- l -homocysteine (SAH) ( K i= 3.4 μ m ) were determined and several SAH analogs tested as inhibitors. S -Adenosyl- l -cysteine (SAC) ( 10 -4 m ) and S -adenosyl- d -homocysteine (SADH) (10-4 m ) produced a 35 and a 21% reduction in enzyme activity, respectively. The effects of Mg2+, NH4+ acetate and of the polyamines spermine, putrescine and spermidine on the brain tRNA-AMT mimicked the effects of these agents on hepatic tRNA-AMT (G lick et al , 1975).
Comparing the ability of cerebral tRNA-AMT to methylate E. coli tRNAglu2, tRNAval, tRNAphe and bulk tRNA revealed tRNAglu2 as the best and tRNAphe as the least effective substrate.
tRNA-AMT prepared from neuronal cell bodies showed closely similar characteristics to the cortical enzyme. A comparison of the activities of tRNA-AMT in neurons and glial cells revealed higher values in the former.  相似文献   

16.
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. The emergence of strains of malarial parasite resistant to conventional drug therapy has stimulated searches for antimalarials with novel modes of action. S-Adenosyl-L-homocysteine hydrolase (SAHH) is a regulator of biological methylations. Inhibitors of SAHH affect the methylation status of nucleic acids, proteins, and small molecules. P.falciparum SAHH (PfSAHH) inhibitors are expected to provide a new type of chemotherapeutic agent against malaria. Despite the pressing need to develop selective PfSAHH inhibitors as therapeutic drugs, only the mammalian SAHH structures are currently available. Here, we report the crystal structure of PfSAHH complexed with the reaction product adenosine (Ado). Knowledge of the structure of the Ado complex in combination with a structural comparison with Homo sapiens SAHH (HsSAHH) revealed that a single substitution between the PfSAHH (Cys59) and HsSAHH (Thr60) accounts for the differential interactions with nucleoside inhibitors. To examine roles of the Cys59 in the interactions with nucleoside inhibitors, a mutant PfSAHH was prepared. A replacement of Cys59 by Thr results in mutant PfSAHH, which shows HsSAHH-like nucleoside inhibitor sensitivity. The present structure should provide opportunities to design potent and selective PfSAHH inhibitors.  相似文献   

17.
Homocysteine (Hcy) is a well-established risk factor for atherosclerosis and may cause dysregulation of gene expression, but the characteristics and the key links involved in its pathogenic mechanisms are still poorly understood. The aim of this study was to explore (i) the effects of Hcy on DNA methylation in vascular smooth muscle cells (VSMCs) and (ii) the underlying mechanism of Hcy-induced changes in DNA methylation patterns in relation to atherosclerosis. We examined the levels of gDNA methylation, namely, the Alu and line-1 element sequences, which can serve as a surrogate marker for gDNA methylation, and also investigated the effects of Hcy on the intracellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations as well as the expressions of SAH hydrolase (SAHH), DNA methyltransferase3a (DNMT3a), DNMT3b, and methyl-CpG-binding domain 2 (MBD2). We found that clinically relevant levels of Hcy (0-500 microM) induced elevation of SAH, declination of SAM and SAM/SAH ratio, and reduction in expression of SAHH and MBD2, but increased the activity of DNMT3a and DNMT3b compared to the control group (p < 0.05). We found also that the genome-wide hypomethylation is a common feature of gDNA in the VSMCs cultured with Hcy. In conclusion, these results suggest that Hcy-induced DNA methylation may be an important potential pathogenic mechanism in the development of atherosclerosis, and may become a therapeutic target for preventing Hcy-induced atherosclerosis.  相似文献   

18.
Abstract: The ability of S -adenosyl- l -homocysteine (AdoHcy) to inhibit biologic transmethylation reactions in vitro has led us to explore the possibility of pharmacologically manipulating AdoHcy levels in vivo and examining the consequences of these alterations on the transmethylation of some biogenic amines. Swiss-Webster mice were injected intraperitoneally with different doses of adenosine (Ado) and d,l -homocysteine thiolactone (Hcy) and were killed at various times thereafter. S -Adenosyl- l -methionine (AdoMet) and AdoHcy concentrations were determined by using a modified isotope dilution-ion exchange chromatography-high pressure liquid chromatography technique sensitive to less than 10 pmol. Increasing doses of Ado + Hcy (50-1000 mg/kg of each) produced a dose-related increase in blood, liver, and brain AdoHcy levels. At a dose level of 200 mg/kg Ado + Hcy, AdoHcy levels were markedly elevated, with minimal concomitant perturbations of AdoMet. This elevation was maximal 40 min after giving Ado + Hcy, returning to control values within 6 h. Ado + Hcy treatment resulted in decreased activities of catechol- O -methyltransferase, histamine- N -methyltransferase, and AdoHcy hydrolase in vitro. The cerebral catabolism of intraventricularly administered [3H]histamine (HA) was decreased in a dose-related manner by Ado + Hcy treatment as evidenced by higher amounts of nonutilized [3H]HA in brain, concurrent decreases in [3H]methylhistamine formation, and decreases in the transmethylation conversion index. Steady state levels of HA also showed dose-related increases after Ado + Hcy treatment. It is concluded that injections of Ado + Hcy can markedly elevate AdoHcy levels in vivo , which can, in turn, decrease the rate of transmethylation reactions.  相似文献   

19.
Formation of homocysteine (Hcy) is the constitutive process of gene methylation. Hcy is primarily synthesized by de-methylation of methionine, in which s-adenosyl-methionine (SAM) is converted to s-adenosyl-homocysteine (SAH) by methyltransferase (MT). SAH is then hydrolyzed to Hcy and adenosine by SAH-hydrolase (SAHH). The accumulation of Hcy leads to increased cellular oxidative stress in which mitochondrial thioredoxin, and peroxiredoxin are decreased and NADH oxidase activity is increased. In this process, Ca2+-dependent mitochondrial nitric oxide synthase (mtNOS) and calpain are induced which lead to cytoskeletal de-arrangement and cellular remodeling. This process generates peroxinitrite and nitrotyrosine in contractile proteins which causes vascular dysfunction. Chronic exposure to Hcy instigates endothelial and vascular dysfunction and increases vascular resistance causing systemic hypertension. To compensate, the heart increases its load which creates adverse cardiac remodeling in which the elastin/collagen ratio is reduced, causing cardiac stiffness and diastolic heart failure in hyperhomocysteinemia.  相似文献   

20.
Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号