首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using small angle neutron scattering we have measured the static form factor of two different superhelical DNAs, p1868 (1868 bp) and pUC18 (2686 bp), in dilute aqueous solution at salt concentrations between 0 and 1.5 M Na+ in 10 mM Tris at 0% and 100% D2O. For both DNA molecules, the theoretical static form factor was also calculated from an ensemble of Monte Carlo configurations generated by a previously described model. Simulated and measured form factors of both DNAs showed the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve at a momentum transfer q = 0.5 nm-1 present at lower concentration disappears above 100 mM. The position of the undulation corresponds to a distance of approximately 10-20 nm. This indicated a change in the DNA superhelix diameter, as the undulation is not present in the scattering curve of the relaxed DNA. From the measured scattering curves of superhelical DNA we estimated the superhelix diameter as a function of Na+ concentration by a quantitative comparison with the scattering curve of relaxed DNA. The ratio of the scattering curves of superhelical and relaxed DNA is very similar to the form factor of a pair of point scatterers. We concluded that the distance of this pair corresponds to the interstrand separation in the superhelix. The computed superhelix diameter of 16.0 +/- 0.9 nm at 10 mM decreased to 9.0 +/- 0.7 nm at 100 mM salt concentration. Measured and simulated scattering curves agreed almost quantitatively, therefore we also calculated the superhelix diameter from the simulated conformations. It decreased from 18.0 +/- 1.5 nm at 10 mM to 9.4 +/- 1.5 nm at 100 mM salt concentration. This value did not significantly change to lower values at higher Na+ concentration, in agreement with results obtained by electron microscopy, scanning force microscopy imaging in aqueous solution, and recent MC simulations, but in contrast to the observation of a lateral collapse of the DNA superhelix as indicated by cryo-electron microscopy studies.  相似文献   

2.
Intensity fluctuation autocorrelation functions of laser light scattered by actively contracting muscle were measured at points in the scattered field. They were reproducible and showed characteristics which depended on the physiological state of the muscle and the parameters of the scattering geometry. The autocorrelation functions had large amplitudes and decay rates that varied significantly with the phase of the contraction-relaxation cycle. The dependence of the autocorrelation function on scattering geometry indicated many elements with diameters on the order of 0.5 mum (presumed to be myofibrillar sarcomeres or their A bands or I bands) undergo independent random changes in their axial positions and their internal distribution of optical polarizability during the plateau of an isometric tetanus. The experimental results are interpreted in terms of a model in which most of the scattering elements in isometrically contracting muscle have random fluctuating axial velocities of average magnitude 20 nm/ms that persist for a few milliseconds at least. In addition to these axial motions there are local fluctuations in polarizability. Similar intensity fluctuation autocorrelation functions were observed throughout the active state on two muscle preparations, whole sartorius muscle and small bundles of single fibers (three to eight) of semitendinosus muscle. These results imply that the tension developed during an isometric tetanus contains a fluctuating component as well as a constant component.  相似文献   

3.
Dynamic and static light scattering, CD, and optical melting experiments have been conducted on M13mp19 viral circular single-strand DNA as a function of NaCl concentration. Over the 10,000-fold range in concentration from 100 microM to 1.0 M NaCl, the melting curves and CD spectra indicate an increase in base stacking and stability of stacked regions with increased salt concentration. Analysis of dynamic light scattering measurements of the single-strand DNA solutions as a function of K2 from 1.56 to 20 X 10(10) cm-2 indicates the collected autocorrelation functions are biexponential, thus revealing the presence of two decaying dynamic components. These components are taken to correspond to (1) global translational motions of the molecular center of mass and (2) motions of the internal molecular subunits. From the evaluated relaxation rates of these components, diffusion coefficients D0 and Dplat are determined. The center of mass translational diffusion coefficient D0, varies in a nonmonotonic manner, by 10%, from 3.75 X 10(-8) to 3.39 X 10(-8) cm2/s over the NaCl concentration range from 100 microM to 1.0 M. Likewise, the radius of gyration RG, obtained from static light scattering experiments, varies by 15% from 699 to 830 A over the same NaCl range Dplat, the diffusion coefficient of the internal subunits, displays a different dependence on the NaCl concentration and decreases, by nearly 22% in a titratable fashion, from 12.46 X 10(-8) to 10.26 X 10(-8) cm2/s, when the salt is increased from 100 microM to 1.0 M. A semiquantitative interpretation of these results is provided by analysis of the light scattering data in terms of the circular Rouse-Zimm chain. Rouse-Zimm model parameters are estimated from the experimental results, assuming the circular chains are composed of a fixed number of Gaussian segments, N + 1 = 15. The rms displacement of the internal segments, b, is estimated to be the smallest (442 A) in 100 mM NaCl. Increases of b to 467 A in 100 microM and 524 A in 1.0 M NaCl are observed. Meanwhile, the hypothetical friction factor of the internal subunits, f, progressively increases as the NaCl concentration is raised. It is inferred from the evaluated Rouse-Zimm model parameters that both the static flexibility of the circular chain and diffusive displacements of the internal subunits decrease with increases in NaCl concentration from 100 mM to 1.0 M.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have analyzed the static and dynamic behaviour of the circular single stranded DNA of the filamentous Escherichia coli phages F1 and M13mp8 in solution as a function of salt concentration using static and dynamic light scattering and sedimentation analysis in the analytical ultracentrifuge. We show by static light scattering that native and denatured single stranded DNA behave like a randomly coiled macromolecule at all salt concentrations used. The size of the native single stranded DNA is governed by the formation of secondary structures. While the radius of gyration decreases with increasing salt concentration the translational diffusion of the center-of-mass of native single stranded DNA and the sedimentation coefficient increase with increasing salt concentration in a biphasic manner. Below 100 mM monovalent cation concentration there is a strong dependence of the hydrodynamic parameters upon salt which is reduced approx. 3-fold at higher salt concentrations. We attribute the compaction of single stranded DNA by salt to electrostatic shielding and, in case of native single stranded DNA, secondary structure formation. Internal motions of the native single stranded DNA are observable at all salt concentrations and can be interpreted with a model of segmental diffusion of the elements of the polymer chain. The observed segmental diffusion coefficient of the native single stranded polynucleotide increases with increasing salt under the conditions investigated.  相似文献   

5.
The hydrodynamic properties of large homodisperse single stranded DNAs complexed with the helix destabilizing protein of phage T4, the product of gene 32 (GP32), have been measured. The results suggest a size of the binding site between 8 and 10 nucleotides/GP32 molecule, in reasonable agreement with earlier work on a complex between GP32 and single stranded 145 base DNA. From static light scattering experiments it is concluded that the persistence length of these complexes is about 30 nm, distinctly smaller than the generally accepted value for double stranded DNA. The quasi-elastic light scattering properties of the DNA-GP32 complexes were determined. The variation of the apparent translation diffusion coefficient Dapp with the scattering vector q was analyzed using the discrete ISMF and Rouse-Zimm models [S.C. Lin et al., Biopolymers 17 (1978) 425]. The model parameters that followed from the fit of Dapp versus q2 and from an extensive global analysis of the actually measured autocorrelation functions agreed with the notion that these DNA-protein complexes are indeed rather flexible. The continuous Soda model [K. Soda, Macromolecules 17 (1984) 2365] could successfully explain the variation of Dapp versus q2, assuming a persistence length of 30 nm and a base-base distance in the complex of 0.44 nm.  相似文献   

6.
Langowski J  Hammermann M  Klenin K  May R  Tóth K 《Genetica》1999,106(1-2):49-55
We present here recent results on the structure of superhelical DNA and its changes with salt concentration between 0.01 and 1.5 M NaCl. Scattering curves of two different superhelical DNAs were determined by static light scattering. The measured radii of gyration do not change significantly with salt concentration. Small-angle neutron scattering, together with calculations from a Monte Carlo model, allows to determine the superhelix diameter. Measured and simulated scattering curves agreed almost quantitatively. Experimentally we find that the diameter decreases from 16.0±0.9 nm at 10 mM to 9.0±0.7 nm at 100 mM NaCl. The superhelix diameter from the simulated conformations decreased from 18.0±1.5 nm at 10 mM to 9.4±1.5 nm at 100 mM NaCl. At higher salt concentrations up to 1.5 M NaCl, the diameter stays constant at 9 nm.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
The phase equilibrium property and structural and dynamical properties of bovine vitreous body was studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. It was found that the vitreous body collapses into a compact state isotropically or anisotropically depending on the external conditions. The vitreous body collapses while maintaining the shape when the pH (相似文献   

8.
Laser light scattering has been used to investigate particle movements in a plant cell. Intensity autocorrelation functions are obtained by digital photon correlation of laser light scattered from cells of Nitella opaca both during cytoplasmic streaming and during the transitory cessation of streaming induced by electrical stimulation. The average velocity computed from the periodic oscillation in the intensity autocorrelation function during streaming corresponds to the velocity estimated using light microscopy. An estimate of the distribution of streaming velocities has been obtained from the decay in the amplitude of the envelope of the autocorrelation function derived from a streaming cell.  相似文献   

9.
We have analyzed the equilibrium and nonequilibrium properties of the complex of the single stranded DNA binding protein of Escherichia coli (EcoSSB) and circular single stranded DNA of filamentous phages M13mp8 and F1 using static and dynamic light scattering, analytical ultracentrifugation and electron microscopy. Upon binding to the single stranded DNA the EcoSSB tetramer replaces an equivalent volume of water trapped within the coiled single stranded DNA and hinders the folding of the single stranded DNA into secondary structures at all salt concentrations. The salt dependent compaction of the stoichiometric complex can be described assuming a flexible polyelectrolyte chain. The solution structure of the macromolecular complex is a random coil and in the electron microscope a beaded flexible structure of the complex with a bead diameter of 6 nm appears at all salt concentrations used. The internal motions of the stoichiometric complex can be described by the Rouse-Zimm model of polymer dynamics. The segmental mobility of the complex can be correlated with changes in the binding site size of the EcoSSB tetramer; it indicates the presence of interactions between EcoSSB tetramers bound to single stranded DNA.  相似文献   

10.
The intensity correlation functions of kappa- and lambda-carrageenan in various salt solutions and at different concentrations have been determined with the help of dynamic light scattering. From the first cumulant of these correlation functions the values of the translational diffusion coefficients D have been derived. They increase with macromolecular concentration. The extrapolated values to infinite dilution of the diffusion coefficients increase with increasing salt concentration as expected from the salt concentration dependence of the r.m.s. radii of gyration determined previously by static light scattering. The translational diffusion coefficient of lambda-carrageenan in 0.1 M NaCl is smaller than the corresponding value for the kappa species. This is consistent with the difference in contour length and linear charge density of the two samples used. No satisfactory interpretation for the concentration dependence of the diffusion coefficient seems to be possible at present. Although current theories for the macromolecular and salt concentration dependence of D, taking into account charge effects, seem to be applicable, they do not allow for a consistent interpretation of the data. No specific difference between the solution behaviour of kappa- and lambda-carrageenan has been detected.  相似文献   

11.
Three different theoretical approaches are used and compared to refine our understanding of ion permeation through the channel formed by OmpF porin from Escherichia coli. Those approaches are all-atom molecular dynamics (MD) in which ions, solvent, and lipids are represented explicitly, Brownian dynamics (BD) in which ions are represented explicitly, while solvent and lipids are represented as featureless dielectrics, and Poisson-Nernst-Planck (PNP) electrodiffusion theory in which both solvent and local ion concentrations are represented as a continuum. First, the ability of the different theoretical approaches in reproducing the equilibrium average ion density distribution in OmpF porin bathed by a 1M KCl symmetric salt solution is examined. Under those conditions the PNP theory is equivalent to the non-linear Poisson-Boltzmann (PB) theory. Analysis shows that all the three approaches are able to capture the important electrostatic interactions between ions and the charge distribution of the channel that govern ion permeation and selectivity in OmpF. The K(+) and Cl(-) density distributions obtained from the three approaches are very consistent with one another, which suggests that a treatment on the basis of a rigid protein and continuum dielectric solvent is valid in the case of OmpF. Interestingly, both BD and continuum electrostatics reproduce the distinct left-handed twisted ion pathways for K(+) and Cl(-) extending over the length of the pore which were observed previously in MD. Equilibrium BD simulations in the grand canonical ensemble indicate that the channel is very attractive for cations, particularly at low salt concentration. On an average there is 1.55 K(+) inside the pore in 10mM KCl. Remarkably, there is still 0.17 K(+) on average inside the pore even at a concentration as low as 1microM KCl. Secondly, non-equilibrium ion flow through OmpF is calculated using BD and PNP and compared with experimental data. The channel conductance in 0.2M and 1M KCl calculated using BD is in excellent accord with the experimental data. The calculations reproduce the experimentally well-known conductance-concentration relation and also reveal an asymmetry in the channel conductance (a larger conductance is observed under a positive transmembrane potential). Calculations of the channel conductance for three mutants (R168A, R132A, and K16A) in 1M KCl suggest that the asymmetry in the channel conductance arises mostly from the permanent charge distribution of the channel rather than the shape of the pore itself. Lastly, the calculated reversal potential in a tenfold salt gradient (0.1:1M KCl) is 27.4(+/-1.3)mV (BD) and 22.1(+/-0.6)mV (PNP), in excellent accord with the experimental value of 24.3mV. Although most of the results from PNP are qualitatively reasonable, the calculated channel conductance is about 50% higher than that calculated from BD probably because of a lack of some dynamical ion-ion correlations.  相似文献   

12.
Static and dynamic light scattering measurements were made of solutions of pGem1a plasmids (3730 base pairs) in the relaxed circular (nicked) and supercoiled forms. The static structure factor and the spectrum of decay modes in the autocorrelation function were examined in order to determine the salient differences between the behaviors of nicked DNA and supercoiled DNA. The concentrations studied are within the dilute regime, which is to say that the structure and dynamics of an isolated DNA molecule were probed. Static light scattering measurements yielded estimates for the molecular weight M, second virial coefficient A2, and radius of gyration RG. For the nicked DNA, M = (2.8 ± 0.4) × 106g/mol, A2 = (0.9 ± 0.2) × 10−3 mol cm3/g2, and RG = 90 ± 3 nm were obtained. For the supercoiled DNA, M = (2.5 ± 0.4) × 106 g/mol, A2 = (1.2 ± 0.2) × 10−3 mol cm3/g2, and RG = 82 ± 2.5 nm were obtained. The static structure factors for the nicked and supercoiled DNA were found to superpose when they were scaled by the radius of gyration. The intrinsic stiffness of DNA was evident in the static light scattering data. Homodyne intensity autocorrelation functions were collected for both DNAs at several angles, or scattering vectors. At the smallest scattering vectors the probe size was comparable to the longest intramolecular distance, while at the largest scattering vectors the probe size was smaller than the persistence length of the DNA. Values of the self-diffusion coefficients D were obtained from the low-angle data. For the nicked DNA, D = (2.9 ± 0.3) × 10−8 cm2/s, and for the supercoiled DNA, D = (4.11 ± 0.21) × 10−8 cm2/s. The contribution to the correlation function from the internal dynamics of the DNA was seen to result in a strictly bimodal decay function. The rates of the faster mode Γint, reached plateau values at low angles. For the nicked DNA, Γint = 2500 ± 500 s−1, and for the supercoiled DNA, Γint = 5000 ± 500 s−1. These rates correspond to the slowest internal relaxation modes of the DNAs. The dependence of the relaxation rates on scattering vector was monitored with the aid of cumulants analysis and compared with theoretical predictions for the semiflexible ring molecule. The internal mode rates and the dependence of the cumulants moments reflected the difference between the nicked DNA and the supercoiled DNA dynamical behavior. The supercoiled DNA behavior seen here indicates that conformational dynamics might play a larger role in DNA behavior than is suggested by the notion of a branched interwound structure. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The complete autocorrelation function of the intensity fluctuations of laser light scattered from motile bull spermatozoa is shown to depend upon several factors not previously considered. Samples of bull spermatozoa generally contain a substantial proportion of dead cells, which give rise to slowly decaying components of the autocorrelation function. Whereas previous work has concentrated on the form of the fast decaying autocorrelation component, we are concerned here with the relative amplitude and shape of the slow autocorrelation component and the general form of the composite function. In principle, the relative amplitudes of the fast and slow components of the autocorrelation function can be used as an assay of the proportion of swimming cells. We show that this amplitude ratio depends upon cell concentration, scattering cell geometry, and scattering angle. A simple model is developed to explain these results on the basis of the asymmetry of light scattered from these cells, motile/immotile cell interactions, wall-swimming effects, and geotactic reorientation of dead cells.  相似文献   

14.
Using static and dynamic light scattering we have investigated the effects of either strongly chaotropic, nearly neutral or strongly kosmotropic salt ions on the hydration shell and the mutual hydrodynamic interactions of the protein lysozyme under conditions supportive of protein crystallization. After accounting for the effects of protein interaction and for changes in solution viscosity on protein diffusivity, protein hydrodynamic radii were determined with ±0.25 Å resolution. No changes to the extent of lysozyme hydration were discernible for all salt-types, at any salt concentration and for temperatures between 15-40°C. Combining static with dynamic light scattering, we also investigated salt-induced changes to the hydrodynamic protein interactions. With increased salt concentration, hydrodynamic interactions changed from attractive to repulsive, i.e., in exact opposition to salt-induced changes in direct protein interactions. This anti-correlation was independent of solution temperature or salt identity. Although salt-specific effects on direct protein interactions were prominent, neither protein hydration nor solvent-mediated hydrodynamic interactions displayed any obvious salt-specific effects. We infer that the protein hydration shell is more resistant than bulk water to changes in its local structure by either chaotropic or kosmotropic ions.  相似文献   

15.
Bends in nucleic acid helices can be quantified in a transient electric birefringence (TEB) experiment from the ratio of the terminal decay times of the bent molecule and its fully duplex counterpart (tau-ratio method). The apparent bend angles can be extracted from the experimental tau-ratios through the application of static (equilibrium-ensemble) hydrodynamic models; however, such models do not properly address the faster component(s) of the birefringence decay profile, which can represent up to 80% of the total birefringence signal for large band angles. To address this latter issue, the relative amplitudes of the components in the birefringence decay profile have been analyzed through a series of Brownian dynamics (BD) simulations. Decay profiles have been simulated for three-, five-, and nine-bead models representing RNA molecules with central bends of 30 degrees, 60 degrees, and 90 degrees, and with various degrees of associated angle dispersion. The BD simulations are in close agreement with experimental results for the fractional amplitudes, suggesting that both amplitudes and terminal tau-ratios can be used as a measure of the magnitudes of bends in the helix axis. Although the current results indicate that it is generally not possible to distinguish between relatively fixed and highly flexible bends from single tau-ratio measurements, because they can lead to similar reductions in terminal decay time and amplitude, measurements of the dependence of the fractional amplitudes on helix length may afford such a distinction.  相似文献   

16.
New, highly amino-substituted dextran or aminodextran (hereafter denoted Amdex) of various sizes between about 20 and 1000 kDa molecular mass and degrees of amino-substitution between 7 and 40% were prepared and characterized by elemental analyses and polyacrylamide gel electrophoresis. These aminodextrans together with others commercially available were shown by static light scattering, viscosity, and refractive index measurements to adopt a globular structure in aqueous salt solutions. Antibody and fluorescent protein dye, phycoerythrin, or its tandems with cyanin 5. 1 and TEXAS RED, were covalently conjugated to the aminodextrans. The conjugates contained multiple dye molecules and were shown by dynamic light scattering and scanning electron microscopy to assume either globular structure or aggregates thereof. Streptavidin could be substituted for antibody to prepare streptavidin-aminodextran-PE conjugates, which were then used with biotinylated antibody to label subpopulations of white blood cells. The conjugates yielded up to 20-fold amplification of fluorescence intensity over direct antibody-dye conjugates in labeling white blood cells for flow cytometry.  相似文献   

17.
18.
Porschke D 《Biochemistry》2012,51(19):4028-4034
The intrinsic fluorescence of the cyclic AMP receptor is a sensitive indicator of the reaction with DNA, but signals are perturbed by a photoreaction. A ratio procedure is shown to be useful for correction. The reaction of the protein with DNA indicated by corrected transients extends over a broad time range not only at low salt concentrations but also at physiological salt concentrations. The initial binding step can be recorded preferentially at low salt pH 7 and is shown to be very similar for specific and nonspecific DNA. The rate constant for initial binding at 13.5 mM salt pH 7 is 2 × 10(8) M(-1) s(-1). Slow reaction steps up to times of several hundred seconds are observed both at low and high salt; the magnitude and sign of fluorescence amplitudes are strongly dependent on salt and pH. At 100 mM salt pH 8, the slow reaction step observed for the binding of the cyclic AMP receptor protein to promoter DNA is strongly shifted to longer times upon reduction of the cAMP concentration. The observed cAMP dependence is described quantitatively by a model implying that binding of the receptor to promoter DNA requires two cAMP molecules per protein dimer and is not consistent with a model assuming that a single cAMP is sufficient for activation. The rate constant for binding of the protein·dimer·(cAMP)(2) complex to the promoter is 1.3 × 10(8) M(-1) s(-1), close to the limit of diffusion control. Equilibration of specific complexes takes ~100 s at physiological concentrations of the reaction components.  相似文献   

19.
Quasi-elastic light scattering and cinematographical techniques were used to investigate the motility of Chlamydomonas reinhardtii (wild type). It was found that quantitative information on the trajectory of motion was required for a meaningful interpretation of the autocorrelation functions. Two models for describing the oscillatory motion of the cell were developed; one based on the instantaneous forward-and-backward motion of the cell, and the other based on a sinusoidal perturbation to the average forward motion. Both models gave satisfactory agreement with the shape of the experimentally measured autocorrelation function, thus making it possible to use this measurement to determine mean progressive swimming velocities in a population of greater than 200 cells.  相似文献   

20.
An experimental verification of an optical microscope technique to create spatial map images of dynamically scattered light fluctuation decay rates is presented. The dynamic light scattering microscopy technique is demonstrated on polystyrene beads and living macrophage cells. With a slow progressive scan charge-coupled device camera employed in a streak-like mode, rapid intensity fluctuations with timescales the order of milliseconds can be recorded from these samples. From such streak images, the autocorrelation function of these fluctuations can be computed at each location in the sample. The characteristic decay times of the autocorrelation functions report the rates of motion of scattering centers. These rates show reasonable agreement to theoretically expected values for known samples with good signal/noise ratio. The rates can be used to construct an image-like spatial map of the rapidity of submicroscopic motions of scattering centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号