共查询到20条相似文献,搜索用时 0 毫秒
1.
Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders. 相似文献
2.
本文旨在研究BALB/c小鼠胎鼠源干细胞同种异体移植的抗衰老作用。采用无菌剖宫产取胎鼠,密度梯度离心法分离干细胞,贴壁培养法纯化扩增间充质干细胞,连续3次尾静脉注射P1代细胞植入15月龄雌性BALB/c小鼠体内。超声检查小鼠心脏,检查血清总超氧化物歧化酶活力、丙二醛含量、谷胱甘肽过氧化物酶活力,各器官做解剖学检查以及组织学衰老程度比较、评分。结果显示,Y染色体原位杂交实验检测到移植后干细胞长期存活,移植后移植组小鼠存活日期明显长于对照组,移植3个月后评价心功能的各指标,心脏质量指数、脾脏质量指数,心脏、肾脏、肺脏、皮肤、结肠等器官组织学衰老程度评分结果以及血液生化指标,皆优于对照组(均P0.05)。以上结果提示,移植小鼠胎鼠源干细胞能有效地延缓小鼠衰老进程。 相似文献
3.
BackgroundTransplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). Methodology/Principal FindingsThe proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. Conclusion/SignificanceSystemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity. 相似文献
4.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one‐time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 10 6 and 14‐day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP‐treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor‐alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs‐treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS. 相似文献
5.
To develop an effective therapeutic strategy for cardiac regeneration using bone marrow mesenchymal stem cells (BM-MSCs), the primary mouse BM-MSCs (1(st) BM-MSCs) and 5(th) passage BM-MSCs from β-galactosidase transgenic mice were respectively intramyocardially transplanted into the acute myocardial infarction (AMI) model of wild type mice. At the 6(th) week, animals/tissues from the 1(st) BM-MSCs group, the 5(th) passage BM-MSCs group, control group were examined. Our results revealed that, compared to the 5(th) passage BM-MSCs, the 1(st) BM-MSCs had better therapeutic effects in the mouse MI model. The 1(st) BM-MSCs maintained greater differentiation potentials towards cardiomocytes or vascular endothelial cells in vitro. This is indicated by higher expressions of cardiomyocyte and vascular endothelial cell mature markers in vitro. Furthermore, we identified that 24 proteins were down-regulated and 3 proteins were up-regulated in the 5(th) BM-MSCs in comparison to the 1(st) BM-MSCs, using mass spectrometry following two-dimensional electrophoresis. Our data suggest that transplantation of the 1(st) BM-MSCs may be an effective therapeutic strategy for cardiac tissue regeneration following AMI, and altered protein expression profiles between the 1(st) BM-MSCs and 5(th) passage BM-MSCs may account for the difference in their maintenance of stemness and their therapeutic effects following AMI. 相似文献
6.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs. 相似文献
7.
Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study. 相似文献
8.
Tinnitus is considered an auditory phantom percept. Recently, transcranial direct current stimulation (tDCS) has been proposed as a new approach for tinnitus treatment including, as potential targets of interest, either the temporal and temporoparietal cortex or prefrontal areas. This study investigates and compares the spatial distribution of the magnitude of the electric field and the current density in the brain tissues during tDCS of different brain targets. A numerical method was applied on a realistic human head model to calculate these field distributions in different brain structures, such as the cortex, white matter, cerebellum, hippocampus, medulla oblongata, pons, midbrain, thalamus, and hypothalamus. Moreover, the same distributions were evaluated along the auditory pathways. Results of this study show that tDCS of the left temporoparietal cortex resulted in a widespread diffuse distribution of the magnitude of the electric fields (and also of the current density) on an area of the cortex larger than the target brain region. On the contrary, tDCS of the dorsolateral prefrontal cortex resulted in a stimulation mainly concentrated on the target itself. Differences in the magnitude distribution were also found on the structures along the auditory pathways. A sensitivity analysis was also performed, varying the electrode position and the human head models. Accurate estimation of the field distribution during tDCS in different regions of the head could be valuable to better determine and predict efficacy of tDCS for tinnitus suppression. 相似文献
9.
Journal of Molecular Histology - Multiple sclerosis (MS), which is an autoimmune disease, is characterized by symptoms such as demyelination, axonal damage, and astrogliosis. As the most abundant... 相似文献
11.
Background aimsMesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons. MethodsWe administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction. ResultsWe provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. ConclusionsOur results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host. 相似文献
13.
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising therapeutic tool to improve balance and optimize rehabilitation strategies. However, current literature shows the methodological heterogeneity of tDCS protocols and results, hindering any clear conclusions about the effects of tDCS on postural control. Objective: Evaluate the effectiveness of tDCS on postural control, and identify the most beneficial target brain areas and the effect on different populations. Methods: Two independent reviewers selected randomized tDCS clinical-trials studies from PubMed, Scopus, Web of Science, and reference lists of retrieved articles published between 1998 and 2017. Most frequently reported centre of pressure (COP) variables were selected for meta-analysis. Other postural control outcomes were discussed in the review. Results: Thirty studies were included in the systematic review, and 11 were submitted to a meta-analysis. A reduction of COP displacement area has been significantly achieved by tDCS, evidencing an improvement in balance control. Individuals with cerebral palsy (CP) and healthy young adults are mostly affected by stimulation. The analysis of the impact of tDCS over different brain areas revealed a significant effect after primary motor cortex (M1) stimulation, however, with no clear results after cerebellar stimulation due to divergent results among studies. Conclusions: tDCS appears to improve balance control, more evident in healthy and CP subjects. Effects are observed when primary MI is stimulated. Cerebellar stimulation should be better investigated. 相似文献
14.
BackgroundIn this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs), combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA) model. Methodology/Principal FindingsOutbred miniature swine underwent hemi-facial allotransplantation (day 0). Group-I (n = 5) consisted of untreated control animals. Group-II (n = 3) animals received MSCs alone (given on days −1, +1, +3, +7, +14, and +21). Group-III (n = 3) animals received CsA (days 0 to +28). Group-IV (n = 5) animals received CsA (days 0 to +28) and MSCs (days −1, +1, +3, +7, +14, and +21). The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant) or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups ( P<0.001). Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3 +T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. ConclusionsThese results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not only suppress inflammation and acute rejection of CTA, but also modulate T-cell regulation and related cytokines expression. 相似文献
15.
The molecular mechanisms driving angiogenesis in tissues derived from embryonic stem (ES) cells are currently unknown. Herein we investigated the effects of direct current (DC) electrical field treatment on endothelial cell differentiation and angiogenesis of mouse ES cells. Treatment of ES cell-derived embryoid bodies with field strengths ranging from 250 V/m to 750 V/m, applied for 60 s, dose-dependently increased the capillary area staining positive for the endothelial-specific marker platelet endothelial cell adhesion molecule-1 (PECAM-1), indicating stimulation of endothelial cell differentiation and angiogenesis. Consequently, increased expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) within 24 h was observed. Electric field treatment raised reactive oxygen species (ROS) generation for at least 48 h, which was blunted by NADPH-oxidase inhibitors diphenylen iodonium chloride (DPI) as well as 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), and increased the expression of NADPH-oxidase subunits p22-phox, p47-phox, p67-phox, and gp91-phox within 24 h. Electrical field treatment resulted in activation of extracellular regulated kinase 1,2 (ERK1,2), p38, as well as c-Jun NH2-terminal kinase (JNK). Pretreatment with the JNK inhibitor SP600125 resulted in a significant decrease in capillary areas under control conditions as well as under conditions of electrical field treatment, whereas the p38 inhibitor SB203580 was without effects. By contrast, the ERK1,2 antagonist UO126 inhibited electrical field-induced angiogenesis, whereas angiogenesis under control conditions was unimpaired. The increase in capillary areas and VEGF expression as well as activation of JNK and ERK1,2 was significantly inhibited in the presence of the free radical scavenger vitamin E underscoring the role of ROS in electrical field-induced angiogenesis of ES cells. 相似文献
16.
Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/80(+) monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment. Besides the known secretion of prostaglandin E2 (PGE2), we report the novel finding that hAEC utilize transforming growth factor-β (TGF-β) for immunosuppression. Neutralization of TGF-β or PGE2 in splenocyte proliferation assays significantly reduced hAEC-induced suppression. Splenocytes from hAEC-treated mice showed a Th2 cytokine shift with significantly elevated IL-5 production. While transferred CFSE-labeled hAEC could be detected in the lung, none were identified in the CNS or in lymphoid organs. This is the first report documenting the therapeutic effect of hAEC in a MS-like model and suggest that hAEC may have potential for use as therapy for MS. 相似文献
17.
Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant morbidity and mortality. The pathology of BPD is multifactorial and leads to alveolar simplification and distal lung injury. Previous studies have shown a beneficial effect of systemic treatment with bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) leading to amelioration of the lung parenchymal and vascular injury in vivo in the hyperoxia murine model of BPD. It is possible that the beneficial response from the MSCs is at least in part due to activation of endogenous lung epithelial stem cells. Bronchioalveolar stem cells (BASCs) are an adult lung stem cell population capable of self-renewal and differentiation in culture, and BASCs proliferate in response to bronchiolar and alveolar lung injury in vivo. Systemic treatment of neonatal hyperoxia-exposed mice with MSCs or MSC-CM led to a significant increase in BASCs compared with untreated controls. Treatment of BASCs with MSC-CM in culture showed an increase in growth efficiency, indicating a direct effect of MSCs on BASCs. Lineage tracing data in bleomycin-treated adult mice showed that Clara cell secretory protein-expressing cells including BASCs are capable of contributing to alveolar repair after lung injury. MSCs and MSC-derived factors may stimulate BASCs to play a role in the repair of alveolar lung injury found in BPD and in the restoration of distal lung cell epithelia. This work highlights the potential important role of endogenous lung stem cells in the repair of chronic lung diseases. 相似文献
18.
BackgroundOsteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children and young adults. Metastases are a major clinical challenge in OS. In this context, 20% of OS patients are diagnosed with metastatic OS, but near 80% of all OS patients could present non-detectable micrometastases at the moment of diagnosis. MethodsOsteogenic differentiation; doxorubicin exclusion assay; fluorescence microscopy; RT-qPCR; proteomic analysis. ResultsOur results suggest that metastatic OS cells possess a diminished osteoblastic differentiation potential with a gain of metastatic traits like the capacity to modify intracellular localization of chemodrugs and higher levels of expression of stemness-related genes. On the opposite hand, non-metastatic OS cells possess bone-associated traits like higher osteoblastic differentiation and also an osteoblastic-inducer secretome. OS cells also differ in the nature of their interaction with mesenchymal stem cells (MSCs), with opposites impacts on MSCs phenotype and behavior. ConclusionsAll this suggests that a major trait acquired by metastatic cells is a switch into a stem-like state that could favor its survival in the pulmonary niche, opening new possibilities for personalized chemotherapeutic schemes. General significanceOur work provides new insights regarding differences among metastatic and non-metastatic OS cells, with particular emphasis on differentiation potential, multidrug resistance and interaction with MSCs. 相似文献
19.
目的 观察骨髓间充质干细胞(MSCs)对移植肾缺血再灌注损伤(IRI)模型修复的保护作用,及其作用机制的思路。方法 (1)采用密度梯度离心法结合贴壁分离法分离培养纯化SD大鼠骨髓MSCs,观察其形态,流式细胞仪检测细胞表面标记,检测骨髓MSCs向成骨和成脂细胞分化的潜能;(2)成年雌性SD大鼠28只,随机分组:正常对照组(control group,n=6),假手术对照组(sham-operated group,n=6),移植肾IRI组(vehicle-treated I/R group,n=8),经尾静脉输注间充质干细胞(MSCs)移植肾IRI组(MSCs-treated via tail vein I/R group,n=8)。检测肾功能指标血尿素氮(BUN)和肌酐(Cr)水平变化,评定肾小管的凋亡指数和增殖指数,测定肾组织起氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及微量丙二醛(MDA)水平,以及对肾脏病理学变化进行观察。结果 (1)分离培养的骨髓MSCs纯度高、生物学特征稳定;(2)移植肾IRI组肾功能指标(BUN36.9±4.8,Scr279.9±22.6)、氧化应激指标明显升高,组织形态学出现肾间质水肿明显,肾小管上皮细胞空泡样变性,近曲小管管壁肿胀,管腔变小。而经尾静脉输注MSCs移植肾IRI组大鼠肾功能指标(BUN22.6±7.8,Scr223.6±26.7)和氧化应激指标得到明显改善(P〈0.05),组织形态学肾小管上皮细胞细胞核固缩、碎裂和溶解等细胞坏死和变性征象明显减轻,肾小管上皮细胞增殖指数(PI)高于IRI组,肾小管上皮细胞凋亡指数(AI)低于IRI组,两组间差异有统计学意义(P〈0.05)。结论 骨髓MSCs输注能促进肾脏IRI损伤后肾脏细胞增殖,抑制肾脏细胞凋亡,降低血清Creatinine和BUN,在一定程度上促进IRI后肾功能的恢复,通过抑制氧自由基的生成减轻肾组织的损伤程度,改善肾功能。 相似文献
20.
BackgroundMesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model. Methodology/Principal FindingsMSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia.Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application. Conclusions/SignificanceTo our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models. 相似文献
|