首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Cholangiocarcinoma (CCA) is the second widespread liver tumor with relatively poor survival. Increasing evidence in recent studies showed long noncoding RNAs (lncRNAs) exert a crucial impact on the development and progression of CCA based on the mechanism of competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-regulated ceRNA in CCA, are only partially understood. The expression profile of messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) downloaded from The Cancer Genome Atlas were comprehensively investigated. Differential expression of these three types of RNA between CCA and corresponding precancerous tissues were screened out for further analysis. On the basis of interactive information generated from miRDB, miRTarBase, TargetScan, and miRcode public databases, we then constructed an mRNA-miRNA-lncRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were conducted to identify the biological function of the ceRNA network involved in CCA. As a result, 2883 mRNAs, 136 miRNAs, and 993 lncRNAs were screened out as differentially expressed RNAs in CCA. In addition, a ceRNA network in CCA was constructed, composing of 50 up and 27 downregulated lncRNAs, 14 up and 7 downregulated miRNAs, 29 up and 25 downregulated mRNAs. Finally, gene set enrichment and pathway analysis indicated our CCA-specific ceRNA network was related with cancer-related pathway and molecular function. In conclusion, our research identified a novel lncRNA-related ceRNA network in CCA, which might act as a potential therapeutic target for patients with CCA.  相似文献   

2.
The thymus plays an irreplaceable role as a primary lymphoid organ. However, the complicate processes of its development and involution are incompletely understood. Accumulating evidence indicates that non-coding RNAs play key roles in the regulation of biological development. At present, the studies of the circRNA profiles and of circRNA-associated competing endogenous RNAs (ceRNAs) in the thymus are still scarce. Here, deep-RNA sequencing was used to study the biological mechanisms underlying the development process (from 2-week-old to 6-week-old) and the recession process (from 6-week-old to 3-month-old) of the mouse thymus. It was found that 196 circRNAs, 233 miRNAs and 3807 mRNAs were significantly dysregulated. The circRNA-associated ceRNA networks were constructed in the mouse thymus, which were mainly involved in early embryonic development and the proliferation and division of T cells. Taken together, these results elucidated the regulatory roles of ceRNAs in the development and involution processes of the mouse thymus.  相似文献   

3.
4.
5.
Plenty of evidence has suggested that long noncoding RNAs (lncRNAs) play a vital role in competing endogenous RNA (ceRNA) networks. Poorly differentiated hepatocellular carcinoma (PDHCC) is a malignant phenotype. This paper aimed to explore the effect and the underlying regulatory mechanism of lncRNAs on PDHCC as a kind of ceRNA. Additionally, prognosis prediction was assessed. A total of 943 messenger RNAs (mRNAs), 86 miRNAs, and 468 lncRNAs that were differentially expressed between 137 PDHCCs and 235 well-differentiated HCCs were identified. Thereafter, a ceRNA network related to the dysregulated lncRNAs was established according to bioinformatic analysis and included 29 lncRNAs, 9 miRNAs, and 96 mRNAs. RNA-related overall survival (OS) curves were determined using the Kaplan-Meier method. The lncRNA ARHGEF7-AS2 was markedly correlated with OS in HCC (P = .041). Moreover, Cox regression analysis revealed that patients with low ARHGEF7-AS2 expression were associated with notably shorter survival time (P = .038). In addition, the area under the curve values of the lncRNA signature for 1-, 3-, and 5-year survival were 0.806, 0.741, and 0.701, respectively. Furthermore, a lncRNA nomogram was established, and the C-index of the internal validation was 0.717. In vitro experiments were performed to demonstrate that silencing ARHGEF7-AS2 expression significantly promoted HCC cell proliferation and migration. Taken together, our findings shed more light on the ceRNA network related to lncRNAs in PDHCC, and ARHGEF7-AS2 may be used as an independent biomarker to predict the prognosis of HCC.  相似文献   

6.
Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) has been reported to correlate with a variety of cancers, with its expression pattern and potential mechanism not clarified in gastric cancer (GC). In this study, we demonstrated that DGCR5 was downregulated in cancerous tissues and plasma samples from patients with GC, and its downregulation was associated with advanced TNM stage and positive lymphatic metastasis. Plasma DGCR5 had an area under the receiver operating characteristic curve (AUC) of 0.722 for diagnosis of GC. Gain- and loss-of-function of DGCR5 revealed that DGCR5 functioned as a competing endogenous RNA for miR-23b to suppress GC cell proliferation, invasion and migration, and facilitate apoptosis by regulating PTEN and BTG1 in vitro. Furthermore, the overexpression of DGCR5 suppressed tumor growth, and inhibited the expression of miR-23b and proliferation antigen Ki-67, but increased the expression of PTEN and BTG1 in vivo. In conclusion, our results show that DGCR5 is a tumor-suppressive lncRNA that regulates PTEN and BTG1 expression through directly binding to miR-23b. This mechanism may contribute to a better understanding of GC pathogenesis and provide a potential therapeutic strategy for GC.  相似文献   

7.
8.
李静秋  杨杰  周平  乐燕萍  龚朝辉 《遗传》2015,37(8):756-764
最新研究表明,RNA之间可以通过竞争结合共同的microRNA反应元件(microRNA response element, MRE)实现相互调节,这种调控模式构成竞争性内源RNA(Competing endogenous RNA, ceRNA)。已发现的ceRNA包括蛋白编码mRNA和非编码RNA,其中后者包括假基因转录物、长链非编码RNA(Long non-coding RNA, lncRNA)、环状RNA(Circular RNA, circRNA)等。文章主要从ceRNA分类的角度,阐述各类ceRNA构成的调控网络发挥的生物学功能在病理和生理相关过程中的作用,以及可能影响ceRNA调控有效性的因素。  相似文献   

9.
Breast cancer (BCa) is the most common malignant tumor in females. Long noncoding RNAs (lncRNAs) are deregulated in many types of human cancers, including BCa. The purpose of the present study was to examine the expression profile and biological role of HOXD cluster antisense RNA 1 (HOXD-AS1) in BCa. Our results revealed that HOXD-AS1 was upregulated in BCa tissues and cell lines, and high HOXD-AS1 expression was correlated with aggressive clinicopathological characteristics of BCa patients. Further gain-of-function and loss-of-function analysis showed that HOXD-AS1 overexpression promoted, whereas HOXD-AS1 knockdown inhibited BCa cell proliferation, cell cycle progression, migration, and invasion, indicating that HOXD-AS1 may function as a novel oncogene in BCa. Mechanistically, HOXD-AS1 could activate epithelial-mesenchymal transition (EMT) in BCa cells. We further proved that HOXD-AS1 might serve as a competing endogenous RNA of miR-421 in BCa cells, and miR-421 was downregulated and negatively correlated with HOXD-AS1 expression in BCa tissues. Besides, we confirmed that SOX4, a master regulator of EMT, was a direct target gene of miR-421. Further, rescue experiments suggested that miR-421 overexpression partly abrogated the oncogenic role of HOXD-AS1 in BCa cells. Therefore, we shed light on that HOXD-AS1/miR-421/SOX4 axis may be considered as a novel therapeutic target for the treatment of BCa patients.  相似文献   

10.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

11.
12.
13.
Endometrial cancer is one of the most common gynecological malignant tumors. The roles of competing endogenous RNAs (ceRNAs) in this disease, however, remain unclear. In this study, we constructed a ceRNA network to reveal the core ceRNAs in endometrial cancer. Differentially expressed genes were summarized from The Cancer Genome Atlas database, whereupon 140 genes were identified for building the network. Further correlation, survival, and enrichment analyses suggested that these genes may help towards elucidating the molecular mechanisms of endometrial cancer. After validation of the findings with the GSE17025 data set, LINC00958, microRNA-761, and DOLPP1 were highlighted as the critical genes in the ceRNA network. Our work suggests that LINC00958 may regulate DOLPP1 by “sponging” miR-761 in endometrial cancer.  相似文献   

14.
Growing evidence has revealed that long noncoding RNAs (lncRNAs) have an important impact on tumorigenesis and tumor progression via a mechanism involving competing endogenous RNAs (ceRNAs). However, their use in predicting the survival of a patient with hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to develop a novel lncRNA expression–based risk score system to accurately predict the survival of patients with HCC. In our study, using expression profiles downloaded from The Cancer Genome Atlas database, the differentially expressed messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) were explored in patients with HCC and normal liver tissues, and then a ceRNA network constructed. A risk score system was established between lncRNA expression of the ceRNA network and overall survival (OS) or recurrence-free survival (RFS); it was further analyzed for associations with the clinical features of patients with HCC. In HCC, 473 differentially expressed lncRNAs, 63 differentially expressed miRNAs, and 1417 differentially expressed mRNAs were detected. The ceRNA network comprised 41 lncRNA nodes, 12 miRNA nodes, 24 mRNA nodes, and 172 edges. The lncRNA expression–based risk score system for OS was constructed based on six lncRNAs (MYLK-AS1, AL359878.1, PART1, TSPEAR-AS1, C10orf91, and LINC00501), while the risk score system for RFS was based on four lncRNAs (WARS2-IT1, AL359878.1, AL357060.1, and PART1). Univariate and multivariate Cox analyses showed the risk score systems for OS or RFS were significant independent factors adjusted for clinical factors. Receiver operating characteristic curve analysis showed the area under the curve for the risk score system was 0.704 for OS, and 0.71 for RFS. Our result revealed a lncRNA expression–based risk score system for OS or RFS can effectively predict the survival of patients with HCC and aid in good clinical decision-making.  相似文献   

15.
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders, for which there has been no effective treatments. To clarify the pathogenesis of PD, we constructed a competing endogenous RNA (ceRNA) network based on the genome-wide RNA sequencing data. It was found that 92 RNAs were differentially expressed, including 50 mRNAs, 25 miRNAs and 17 lncRNAs, based on which a ceRNA network was constructed and evaluated from 4 aspects of number of nodes, topological coefficients, closeness centrality and betweenness centrality. The functional annotation and enrichment analysis suggested that 6 functional modules, particularly the peripheral nervous system development and toxin metabolic process, dominated the development of PD. To validate the assumption, the gene set enrichment analysis (GSEA) was conducted basing on the genome-wide RNAs regardless whether they were differentially expressed or not. Consistently, the results revealed that dysregulation of MAG, HOXB3, MYRF and PLP1 led to metabolic disorders of sphingolipid and glutathione, which contributed to the pathogenesis of PD. Also, in-depth mining of previous literature confirmed a pivotal role of these dysregulated RNAs, which had been indicated to be potential diagnostic and therapeutic biomarkers of PD. Overall, we constructed a ceRNA network based on the dysregulated mRNAs, lncRNAs and miRNAs in PD, and the aberrant expression of MAG, HOXB3, MYRF and PLP1 caused metabolism disorder of sphingolipid and glutathione, and these genes are of great significance for the diagnosis and treatment of PD.  相似文献   

16.
Ovarian cancer (OC) is a fatal cancer in women, mainly due to its aggressive nature and poor survival rate. The lncRNA-miRNA-mRNA (long noncoding RNA-microRNA-messenger RNA) interaction is promising biomarkers for the improving prognosis of OC. Therefore, we explored the regulatory mechanism of WDFY3-AS2/miR-18a/RORA axis involved in the biological activities of OC cells. Microarray analysis predicted differentially expressed lncRNA, miRNA, and mRNA related to OC, followed by investigating the relationship among them. The expression patterns of the identified lncRNA WDFY3-AS2, miR-18a, and RORA were measured in OC tissue and cells. Gain- and loss-of-function experiments were performed to characterize the effect of lncRNA WDFY3-AS2 on OC cells, as well as the involvement of miR-18a and RAR related orphan receptor A (RORA). The in vitro assays were validated by in vivo experiments. According to bioinformatics analysis, WDFY3-AS2 was speculated to affect OC by sponging miR-18a and modulating RORA. WDFY3-AS2 and RORA were underexpressed in OC, while miR-18a was highly expressed. Notably, WDFY3-AS2 acts as a competing endogenous RNA to sponge miR-18a and upregulate RORA. Upon overexpressing WDFY3-AS2 or inhibiting miR-18a, RORA expression was increased, thereby the OC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were suppressed, accompanied by enhanced apoptosis. In vivo experiments confirmed that the tumor growth was reduced in response to overexpressed WDFY3-AS2 or inhibited miR-18a. Taken together, the lncRNA WDFY3-AS2/miR-18a axis regulates the tumor progression of OC by targeting RORA, providing new insights for prevention and control of OC.  相似文献   

17.
18.
19.
Due to its high proliferation capacity and rapid intracranial spread, glioblastoma (GBM) has become one of the least curable malignant cancers. Recently, the competing endogenous RNAs (ceRNAs) hypothesis has become a focus in the researches of molecular biological mechanisms of cancer occurrence and progression. However, there is a lack of correlation studies on GBM, as well as a lack of comprehensive analyses of GBM molecular mechanisms based on high‐throughput sequencing and large‐scale sample sizes. We obtained RNA‐seq data from The Cancer Genome Atlas (TCGA) and Genotype‐Tissue Expression (GTEx) databases. Further, differentially expressed mRNAs were identified from normal brain tissue and GBM tissue. The similarities between the mRNA modules with clinical traits were subjected to weighted correlation network analysis (WGCNA). With the mRNAs from clinical‐related modules, a survival model was constructed by univariate and multivariate Cox proportional hazard regression analyses. Thereafter, we carried out Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, we predicted interactions between lncRNAs, miRNAs and mRNAs by TargetScan, miRDB, miRTarBase and starBase. We identified 2 lncRNAs (NORAD, XIST), 5 miRNAs (hsa‐miR‐3613, hsa‐miR‐371, hsa‐miR‐373, hsa‐miR‐32, hsa‐miR‐92) and 2 mRNAs (LYZ, PIK3AP1) for the construction of a ceRNA network, which might act as a prognostic biomarker of GBM. Combined with previous studies and our enrichment analysis results, we hypothesized that this ceRNA network affects immune activities and tumour microenvironment variations. Our research provides novel aspects to study GBM development and treatment.  相似文献   

20.
Hepatocellular carcinoma (HCC) is a common malignant tumour with high rates of morbidity and mortality worldwide. Therefore, it is of great significance to find new molecular markers for HCC diagnosis and treatment. G6PD is known to be dysregulated in a variety of tumours. In addition, the ceRNA network plays a crucial role in the occurrence and development of HCC. However, the mechanism by which the ceRNA network regulates G6PD in HCC remains unclear. We used TCGA-LIHC data to analyse the possibility of using G6PD as an independent prognostic marker. Univariate Cox proportional hazards regression, multivariate Cox proportional hazards regression, and receiver operating characteristic curve analysis were used to analyse the influence of G6PD overexpression on the prognosis of HCC patients. We also analysed the biological function of G6PD, its effect on the immune microenvironment, and drug sensitivity. Finally, we constructed a ceRNA network of lncRNAs/miR-122-5p/G6PD to explore the regulatory mechanism of G6PD. G6PD was highly expressed in HCC, was related to pathological stage and poor prognosis, and could be used as an independent prognostic indicator of HCC. The expression of G6PD was closely related to the immune microenvironment of HCC. In addition, the expression of G6PD in HCC could be regulated by the ceRNA network. Therefore, G6PD can be used as an immunotherapy target to improve the survival and prognosis of HCC patients, and the ceRNA regulatory network of G6PD has potential diagnostic and therapeutic value for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号