首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The polyamines influence the activity of many enzymes involved in the synthesis and degradation of RNA. These organic cations (putrescine, spermidine, spermine) stimulate, for example, many DNA-dependent RNA polymerases and affect both RNA chain elongation and initiation. The polyamines also bind to polynucleotides, forming complexes having, in many cases, physical properties quite distinct from the parent polymer. Some of these complexes are resistent to ribonuclease mediated hydrolysis. However, polyamines alter the activity, as well as the specificity of some RNases, so the actual rate of breakdown of RNA is dependent on the interaction of polyamine with both RNA and enzyme. The hydrolytic rate may also be controlled by the presence of purine homopolymer, which acts to strongly inhibit RNase activity. The addition of polyadenylic acid tracts to the 3 terminus of the RNA substrate, for example, protects the unpolyadenylated portion of the RNA molecule from degradation. Longer segments of poly(A) are more effective in this respect; however, regardless of poly(A) length, low concentrations of spermidine reverse the inhibition of RNase activity, with concomitant rapid degradation of the unpolyadenylated portion of the RNA molecule. Thus, RNA degradation depends not only on the presence of RNase, but on poly(A) length and spermidine concentration as well. Although the relative importance, within the cell, of each of these interactions is not known, the above mechanisms illustrate certain of the complexities and interrelations that may exist for the synthesis and, in particular, the RNase mediated degradation of RNA.A submitted article  相似文献   

2.
S Falkenthal  J A Lengyel 《Biochemistry》1980,19(25):5842-5850
We have characterized the copia RNA in the cytoplasm of cultured Drosophila cells. Copia RNA was detected and purified by hybridization to DNA of the plasmid cDm 1142, which contains the copia sequence. A large fraction (2.2%) of the total cytoplasmic poly(A)+ RNA was found to be copia RNA. Cytoplasmic copia RNA displays all the characteristics expected for a messenger RNA. It possesses a poly(A) tract identical in length with that of total poly(A)+ cytoplasmic RNA. It is associated with polysomes and can be released from this association by treatment with EDTA. When purified copia RNA is added to an mRNA-dependent rabbit reticulocyte lysate, three polypeptides of 51000, 33000, and 21000 daltons are seen. We have not determined if these are different polypeptides or if the two smaller polypeptides are fragments of the 51000-dalton polypeptide. The half-life of copia cytoplasmic RNA was determined in pulse--chase experiments to be 9.5 h; this is 1.6 times longer than the half-life of the intermediate decay class of total poly(A)+ cytoplasmic RNA. These properties provide strong evidence that copia RNA functions in vivo as a messenger RNA.  相似文献   

3.
S Tracy  D E Kohne 《Biochemistry》1980,19(16):3792-3799
A method is described for using very high specific activity [3H]poly(deoxythymidylate) [[3H]poly(dT)] to detect, size, and quantiate subnanogram amounts of nonradioactive polyadenylated RNA. Short (approximately 100 nucleotides long) [3H]poly(dT) is hybridized to the poly(adenylate) [poly(A)] tracts in polyadenylated RNAs. The RNA may then be sized and quantitated by sucrose gradient analysis. The addition of the small [3H]poly(dT) molecules does not significantly alter the s values of RNAs. The amount of [3H]poly(dT) hybridized to polyadenylated RNA increases linearly with the amount of RNA. A room temperature hydroxylapatite (HA) method has also been developed to detect and quantitate poly(A)-containing RNA after hybridization to radioactive poly(dT). S-1 nuclease (S-1) analysis can also be used to measure the poly(A) content of polyadenylated RNA to less than nanogram RNA amounts. For both the S-1 and HA approaches, the amount of [3H]poly(dT) hybridized increases with the amount of RNA and the methods can detect to as little as 10(-12) g of polyadenylated RNA with [3H]poly(dT). Greater sensitivity is possible with higher specific activity poly(dT). The approaches presented here significantly extend the uses of radioactive homopolymers to detect, quantitate, and characterize RNAs containing complementary homopolymer tracts.  相似文献   

4.
5.
6.
The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5′-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3′-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5′-terminus, a protruding 5′-terminus made the RNA 5′-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.  相似文献   

7.
8.
Third-instar larvae of the blowfly Calliphora erythrocephala were injected with [2-3H]adenosine, and its flow into the salivary gland ATP pool and each of several electrophoretically resolved salivary gland RNA species were quantitated. From these data, the individual in vivo rates of synthesis, accumulation, and processing of salivary gland ribosomal RNA (rRNA), 4 S RNA, and 5 S RNA have been measured at several different developmental stages. These results indicate that the synthesis of 5 S RNA and rRNA are coordinate, developmentally regulated, and independent of the synthesis of 4 S RNA. A nonribosomal, heterodisperse RNA component (hdRNA) was also identified. This species contributes to both the rapidly turning over pulse-labeled RNA and the accumulating pulse-labeled RNA populations. Indirect measurements suggest that the developmental pattern of regulation of this RNA species is also independent of 5 S RNA and rRNA synthesis. The rate of synthesis and accumulation of each of these RNA species either remained constant or declined during the first three-fourths of the instar, despite a six- to sevenfold increase in the content of cellular DNA.  相似文献   

9.
10.
Tanaka N  Schwer B 《Biochemistry》2005,44(28):9795-9803
The DEAH protein Prp22 is important for the second transesterification step of pre-mRNA splicing, and it is essential for releasing mature mRNA from the spliceosome. Recombinant Prp22 has RNA-stimulated ATPase and ATP-dependent unwinding activities, which are crucial for the mRNA release step. In this study, we characterize the RNA-binding, NTP hydrolysis, and RNA unwinding functions of Prp22. Using nitrocellulose filter binding assays, we determined that the apparent affinity of Prp22 is approximately 20-fold greater for single-stranded RNA than for single-stranded DNA or duplex nucleic acids. Inclusion of hydrolyzable ATP in binding reactions increased the apparent K(D) for RNA by 3-4-fold. The Prp22-RNA interaction is influenced by the length of the RNA chain, and the apparent K(D) values for poly(A)(40) and poly(A)(10) are 17 and 140 nM, respectively. RNA-stimulated ATP hydrolysis is similarly affected by chain length, and optimal activity requires RNA oligomers of >or=20 nt. We show that Prp22 can hydrolyze all common NTPs and dNTPs with comparable efficiencies and that Prp22 unwinds RNA duplexes with 3' to 5' directionality.  相似文献   

11.
Small cytoplasmic poly(A) + RNA homologous to a highly repeated sequence B2 of the mouse genome (scB2 RNA) was not found as free RNA within a cell. This RNA is bound to small (12-18S) ribonucleoprotein particles as well as to heavy RNP particles, apparently informosomes. After deproteinization of the heavy RNP the major part of scB2 RNA molecules cosedimented with heavy RNAs. It seems that scB2 RNA is associated with mRNA in informosomes via short complementary regions. About half of the scB2 RNA molecules was revealed in the cytoskeleton fraction. The possibility that scB2 RNAs are involved in mRNA transport or in the regulation of mRNA translation is discussed.  相似文献   

12.
No community-accepted scientific methods are available today to guide studies on what role RNA played in the origin and early evolution of life on Earth. Further, a definition-theory for life is needed to develop hypotheses relating to the "RNA First" model for the origin of life. Four approaches are currently at various stages of development of such a definition-theory to guide these studies. These are (a) paleogenetics, in which inferences about the structure of past life are drawn from the structure of present life; (b) prebiotic chemistry, in which hypotheses with experimental support are sought that get RNA from organic and inorganic species possibly present on early Earth; (c) exploration, hoping to encounter life independent of terran life, which might contain RNA; and (d) synthetic biology, in which laboratories attempt to reproduce biological behavior with unnatural chemical systems.  相似文献   

13.
Replication complexes containing only one molecule of Q beta replicase and one strand of midivariant RNA (MDV-1 RNA) template were prepared by incubating the replicase with an excess of MDV-1 (-) RNA. In the presence of excess minus strands, these monoenzyme replication complexes were shown to synthesize essentially pure MDV-1 (+) RNA in both the first and second cycles of replication. When an equivalent concentration of mutant MDV-1 (-) RNA was added to this reaction before completion of the first cycle of replication, only wild-type MDV-1 (+) RNA was produced in the first cycle, but both mutant and wild-type MDV-1 (+) RNA were produced in the second cycle of replication. These results demonstrate that a monoenzyme complex is competent to synthesize RNA and, therefore, that a multienzyme replication complex is not a necessary intermediate of replication. The data also imply that after the completion of chain elongation, the product strand is released from the replication complex and that the template and the replicase then dissociate.  相似文献   

14.
The stored poly(A) + RNA from zoospores of the aquatic fungus Blastocladiella emersonii represents 2.5% of the total RNA and has a model MW of 425,000 daltons and an average poly(A) isostich of 32 bases. The poly(A) + RNA also represents 2.5% of the total RNA from early growth phase cells and has a modal MW of 360,000 daltons and an average poly(A) isostich of 38 bases. The poly(A) + RNA from spores and 2-hr plants contains a structure resistant to RNases T1, T2, and A, which can be labeled with 32PO4 and which will bind to DBAE-cellulose. These characteristics strongly suggest that both the zoospore poly(A) + RNA and the 2-hr cell poly(A) + RNA are capped at the 5′ end; and, hence, it is unlikely that capping is involved in the control of protein synthesis during germination.Approximately 80% of the poly(A) + RNA of the spore is located in the membrane-enclosed ribosomal nuclear cap, and more than 90% of the poly(A) + RNA within the cap is found in the 80S monoribosome and heavier fractions.Synthesis of new poly(A) + RNA occurs very early during zoospore germination, and the labeled poly(A) + RNA rapidly enters the newly organized polysomes. The labeling data for early germination also suggest that cytoplasmic polyadenylation occurs.  相似文献   

15.
16.
Analyses of prototype vesicular stomatitis (VSV, Indiana serotype) mRNA-32P-labeled viral RNA duplexes have established the assignments of 65 of the 72 large oligonucleotides that are recovered by two-dimensional electrophoresis of RNase T1 digests of the viral RNA. Fifty of the oligonucleotides are recovered in the L RNA duplex, four each in the N, M, and NS duplexes, and three in the G RNA duplex. Studies of three small defective-particle RNA species indicate that they have only L gene oligonucleotides in addition to three of the seven unassigned oligonucleotides. Some L gene ordering of oligonucleotides can be postulated from the defective-particle RNA sequence analyses. Analyses of naturally occurring alternate isolates of VSV Indiana have established that by comparison to the prototype virus strain, the alternate isolates minimally have genome sequence differences in L, G, N, NS and/or unassigned regions of the genome. Changes in the genome have also been induced by vitro high-level mutagenesis of the prototype virus.  相似文献   

17.
Poly(U) Sepharose column chromatography was used to characterize the poly(A) RNA in RNA fractions differentially extracted from mammalian cells and subcellular components.. RNA fraction A was phenol extracted at pH 5.2 and 4°C and fraction B was phenol extracted from the residual material by elevating the extraction temperature and pH. With labeled RNA from HeLa cells, six peaks were isolated using a decreasing discontinuous KCl gradient (peaks I through IV), 1% sodium dodecylsulfate (peak V), and 90% formamide (peak VI). Peaks I through IV in fraction A were 0.8 to 2.3% polyadenylic acid; peak V was 2.9%; and peak VI, 16.7%. In fraction B RNA, peaks I through IV were 6 to 7.6% polyadenylic acid; peak V, 7.7%; and peak VI, 19.5%. After 24 h labeling of human myeloma cells to achieve a steady state, and subsequent subcellular fractionation, peak III was localized in RNA fraction B from the chromatin; this peak was not found in the polysomes. These and other observations suggest that poly(U) Sepharose chromatography combined with a discontinuous elution scheme is a very sensitive procedure for monitoring metabolic changes in poly(A) RNA subpopulations with time, subcellular location, and RNA extraction procedure.  相似文献   

18.
Virus-specific RNA synthesis in the midgut of silkworm infected with cytoplasmic-polyhedrosis virus was investigated under the condition inhibiting host RNA synthesis by actinomycin D injection. Two species of virus-induced RNA were formed; one was sensitive to ribonuclease (RNase) but the other was resistant. The resistant RNA had a sedimentation coefficient of 15 S and was considered as viral progeny with doublestranded RNA. The sensitive RNA, presumably single-stranded RNA, consisted of two classes with 15 S and 22 S sedimentation coefficients. Annealing the single-stranded RNA with heat-denatured CPV-RNA indicated that the single-stranded RNA was transcribed from viral genome RNA. The function of 22 S and 15 S single-stranded RNAs was discussed from the viewpoint of virus multiplication.  相似文献   

19.
Zhang B  Dong H  Zhou Y  Shi PY 《Journal of virology》2008,82(14):7047-7058
Flavivirus methyltransferase catalyzes both guanine N7 and ribose 2'-OH methylations of the viral RNA cap (GpppA-RNA-->m(7)GpppAm-RNA). The methyltransferase is physically linked to an RNA-dependent RNA polymerase (RdRp) in the flaviviral NS5 protein. Here, we report genetic interactions of West Nile virus (WNV) methyltransferase with the RdRp and the 5'-terminal stem-loop of viral genomic RNA. Genome-length RNAs, containing amino acid substitutions of D146 (a residue essential for both cap methylations) in the methyltransferase, were transfected into BHK-21 cells. Among the four mutant RNAs (D146L, D146P, D146R, and D146S), only D146S RNA generated viruses in transfected cells. Sequencing of the recovered viruses revealed that, besides the D146S change in the methyltransferase, two classes of compensatory mutations had reproducibly emerged. Class 1 mutations were located in the 5'-terminal stem-loop of the genomic RNA (a G35U substitution or U38 insertion). Class 2 mutations resided in NS5 (K61Q in methyltransferase and W751R in RdRp). Mutagenesis analysis, using a genome-length RNA and a replicon of WNV, demonstrated that the D146S substitution alone was lethal for viral replication; however, the compensatory mutations rescued replication, with the highest rescuing efficiency occurring when both classes of mutations were present. Biochemical analysis showed that a low level of N7 methylation of the D146S methyltransferase is essential for the recovery of adaptive viruses. The methyltransferase K61Q mutation facilitates viral replication through improved N7 methylation activity. The RdRp W751R mutation improves viral replication through an enhanced polymerase activity. Our results have clearly established genetic interactions among flaviviral methyltransferase, RdRp, and the 5' stem-loop of the genomic RNA.  相似文献   

20.
The principal RNA species isolated from labeled preparations of the arenavirus Pichinde usually include a large viral RNA species L (apparent molecular weight = 3.2 X 10(6)), and a smaller viral RNA species S (apparent molecular weight = 1.6 X 10(6)). In addition, either little or considerable quantities of 28S rRNA as well as 18S rRNA can also be obtained in virus extracts, depending on the virus stock and growth conditions used to generate virus preparations. Similar RNA species have been identified in RNA extracted from Tacaribe and Tamiami arenavirus preparations. Oligonucleotide fingerprint analyses have confirmed the host ribosomal origin of the 28S and 18S species. Such analyses have also indicated that the Pichinde viral L and S RNA species each contain unique nucleotide sequences. Viral RNA preparations isolated by conventional phenol-sodium dodecyl sulfate extraction often have much of their L and S RNA species in the form of aggregates as visualized by either electron microscopy or oligonucleotide fingerprinting of material recovered from the top of gels (run by using undenatured RNA preparations). Circular and linear RNA forms have also been seen in electron micrographs of undenatured RNA preparations, although denatured viral RNA preparations have yielded mostly linear RNA species with few RNA aggregates or circular forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号