首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Activation of the Evi-1 zinc finger gene is a common event associated with transformation of murine myeloid leukemias. To characterize the gene product, we developed antisera against various protein domains. These antisera primarily detected a 145-kilodalton nuclear protein that bound double-stranded DNA. Binding was inhibited by chelating agents and partially restored by zinc ions.  相似文献   

3.
We characterized a DNA-binding protein with an approximate molecular weight of 129,000 (DB129) which is present in the nuclei of cytomegalovirus- (strain Colburn) infected cells, but not in virus particles. Results of two types of experiments demonstrated that DB129 is a member of the early class of herpesviral proteins. First, time course pulse-labeling experiments showed that its synthesis begins after that of the immediate-early protein IE94, but prior to the appearance of late viral proteins, and was reduced at late times. Second, in the presence of inhibitors of viral DNA replication, DB129 continued to be made and accumulated to elevated levels. A second set of experiments showed that DB129 bound to single-stranded DNA in vitro and was eluted by a NaCl gradient in two peaks, one at about 0.2 M and the second at about 0.6 M. A similar pattern of release was observed when infected-cell nuclei were serially extracted with increasing NaCl concentrations. In addition, treatment of nuclei with DNase I selectively released DB129, along with a small but significant fraction of another DNA-binding protein, DB51. These results suggest that DB129 is associated with DNA in vivo and that it interacts directly with single-stranded DNA. It was also shown that cells infected with human cytomegalovirus (strain Towne) contain a slightly larger counterpart to DB129, which was designated DB140. Similarities between these proteins and the major DNA-binding protein of herpes simplex virus are discussed.  相似文献   

4.
A 62,000-dalton (62K) cell protein reacts with antisera to the 72K polypeptide of the Epstein-Barr virus nuclear antigen (EBNA) in immunoblots. This protein was initially detected in EBNA-negative as well as EBNA-positive cell lines with anti-EBNA-positive human sera. A monoclonal antibody raised against the 72K EBNA and an antiserum from a rabbit immunized with the glycine-alanine domain of EBNA also reacted with the cellular protein. The cellular protein was partially purified from Epstein-Barr virus genome-positive and -negative cell lines. Absorption experiments identified a shared antigenic determinant between the 72K EBNA and 62K cellular protein. A comparison of the 62K protein and EBNA by protease digestion did not reveal similar peptides.  相似文献   

5.
6.
The Eptstein-Barr virus (EBV)-determined nuclear antigen (EBNA) was solubilized from isolate nuclei of two EBV-transformed cell lines- Raji and AW-Ramos, by high-salt treatment. Its DNA-binding properties were studied by DNA-cellulose chromatography and a 51Cr release complement fixation assay. EBNA binds to both double-stranded and single-stranded calf thymus DNA, showing a higher affinity to double-stranded DNA. There was no detectable difference in the DNA binding of EBNA prepared from Raji and AW-Ramos cells.  相似文献   

7.
Chromokinesin: a DNA-binding, kinesin-like nuclear protein   总被引:18,自引:7,他引:11       下载免费PDF全文
Microtubule-associated mechanoenzymes have been proposed to play a fundamental role in chromosome movement. We have cloned and characterized the cDNA for a novel protein, named Chromokinesin, that fulfills several of the criteria expected of a mitotic motor. Chromokinesin contains both a kinesin motor-like domain and an unusual basic-leucine zipper DNA-binding domain. Its mRNA is readily detectable in proliferating cells, but not in postmitotic cells. Immunocytochemical analysis with antibodies directed against the nonconserved COOH-terminal region of Chromokinesin indicates that the protein is localized in the nucleus, and primarily associated with chromosome arms in mitotic cells. These data suggest that Chromokinesin is likely to function as a microtubule-based mitotic motor with DNA as its cargo.  相似文献   

8.
9.
Identification and characterization of a nuclear pore complex protein   总被引:113,自引:0,他引:113  
L I Davis  G Blobel 《Cell》1986,45(5):699-709
We describe studies using a monoclonal antibody that recognizes a 62 kd protein (p62) of rat liver nuclei. This protein remains associated with the nuclear pore complex-lamina fraction resulting from treatment of nuclei with DNAase, RNAase, and nonionic detergent. Immunofluorescence revealed a strikingly punctate pattern of nuclear rim staining. By immunoferritin microscopy, p62 was specifically localized to the pore complex. Thus, pore complexes can be resolved by fluorescence light microscopy. Pulse chase analysis of labeled tissue culture cells showed that p62 is synthesized as a soluble cytoplasmic precursor of 61 kd, which is incorporated into the nuclear fraction with an unusually long t1/2 of about 6 hr. Incorporation is followed by modification that may involve addition of N-acetylglucosamine residues.  相似文献   

10.
Calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and concomitantly deactivates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs), such as CaMKI, CaMKII, and CaMKIV. In the present study, a nuclear CaMKP-related protein, CaMKP-N, was identified. This protein consisted of 757 amino acid residues with a calculated molecular weight of 84,176. Recombinant CaMKP-N dephosphorylated CaMKIV. The activity of CaMKP-N requires Mn(2+) ions and is stimulated by polycations. Transiently expressed CaMKP-N in COS-7 cells was localized in the nucleus. This finding together with previous reports regarding localization of CaMKs indicates that CaMKP-N dephosphorylates CaMKIV and nuclear CaMKII, whereas CaMKP dephosphorylates CaMKI and cytosolic CaMKII.  相似文献   

11.
Egr-1 is an immediate-early response gene induced by diverse signals that initiate growth and differentiation. Its cDNA sequence predicts a protein with zinc fingers. We have generated an antiserum to the Egr-1 gene product and identified it as an 80-kilodalton short-lived protein in serum-stimulated mouse fibroblasts. The rat Egr-1 product has also been identified in nerve growth factor-induced PC12 cells. In addition, we show by cell fractionation and immunocytochemistry that the Egr-1 protein is located in the nucleus. We also demonstrate that it is phosphorylated. In vitro-generated Egr-1 protein binds with high affinity to the sequence CGCCCCCGC in a zinc-dependent manner.  相似文献   

12.
We have analysed the effect of mitogenic lectins on c-Fos and c-Jun protein levels as well as on activator protein-1 (AP-1) binding and enhancer activity in Jurkat T-cells. Both c-Fos and c-Jun protein levels were increased after Con A and PHA stimulation. Since T-cell stimulation increases both intracellular Ca2+ and cAMP levels and activates protein kinase C (PKC), the possible involvement of these intracellular messengers in c-Fos and c-Jun induction was tested. PMA, which directly activates PKC, mimicked the effect of the lectins on c-Fos and c-Jun, but elevation of either intracellular Ca2+ or cAMP levels had little or no effect. The mitogen-induced increase of c-Fos and c-Jun immunoreactivity was inhibited by H-7, a kinase inhibitor with relatively high specificity for PKC, and less efficiently by H-8, a structurally related kinase inhibitor less active on PKC, but more active on cyclic nucleotide-dependent kinases. Con A stimulation was found to increase both binding of AP-1 to the AP-1 consensus sequence, TRE, and AP-1 enhancer activity, in Jurkat cells. PMA was also found to increase the AP-1 enhancer activity, whereas elevation of Ca2+ or cAMP had only minor effects. We conclude that stimulation with mitogenic lectins is sufficient to increase both c-Fos and c-Jun protein levels, AP-1 binding and AP-1 enhancer activity in Jurkat cells and that they act via mechanisms that could involve the activation of PKC.  相似文献   

13.
14.
The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.  相似文献   

15.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation.  相似文献   

16.
17.
The isolation and characterization of an adenovirus mutant, Ad5dl802r1, containing two independent deletions in the 72-kilodalton (kDa) DNA-binding protein (DBP) gene is described. The two deletions remove amino acids 23 through 105 of DBP, resulting in the production of a 50-kDa product. Expression of this truncated DBP was delayed 12 to 24 h compared with that of the 72-kDa protein produced by wild-type adenovirus type 5. The DBP was located primarily in the cytoplasm of infected cells, whereas the wild-type product was predominantly nuclear. Therefore, DBP appears to contain a nuclear localization signal within the deleted region. Ad5dl802r1 DNA synthesis, viral late gene expression, and virus production were all delayed 12 to 24 h and were approximately 10-fold lower than with wild-type adenovirus type 5. These phenotypic properties can be accounted for by the delay in synthesis and the inefficient accumulation of the 50-kDa DBP within the nucleus of infected cells. The truncated DBP also lacks the majority of amino acids which are phosphorylated in the normal protein. The loss of these phosphorylation sites does not appear to seriously impair the ability of the protein to carry out its functions.  相似文献   

18.
19.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号