首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While extensive knowledge exists on the relationship between nutrient loading and nutrient concentrations in lakes in the cold temperate region, few studies have been conducted in warm lakes, not least in warm arid lakes. This is unfortunate as a larger proportion of the world’s lakes will be situated in arid climates in the future due to climate change and a larger proportion will suffer from a higher frequency of intensive drought. We conducted a comprehensive 11–13 year mass balance study in two interconnected shallow Mediterranean lakes in Turkey, covering a period with substantial changes in climate conditions. The upstream lake was only affected by natural changes in nutrient loading, while the downstream lake was additionally influenced by sewage diversion and restoration by fish removal. Contrasting to experience from north temperate lakes we found an increase in in-lake concentrations of total phosphorus and inorganic nitrogen (ammonia as well as nitrate) in dry years despite lower external nutrient loading, and submerged macrophytes did not increase the nitrogen retention capacity of the lakes. In contrast, fish removal modulated the nitrogen concentration as in north temperate lakes, but the effect was not long-lasting. Our results suggest that climate warming reduces the nutrient retention capacity of shallow lakes in the Mediterranean and exacerbates eutrophication. Lower thresholds of nutrient loading for shifting turbid shallow lakes to a clear water state are therefore to be expected in arid zones in a future warmer climate, with important management implications.  相似文献   

2.
Shallow lakes, the most abundant lake type in the world, are very sensitive to climatic changes. The structure and functioning of shallow lakes are greatly impacted by submerged plants, and these may be affected by climate warming in various, contrasting, ways. Following a space‐for‐time substitution approach, we aimed to analyse the role of aquatic (submerged and free‐floating) plants in shallow lakes under warm climates. We introduced artificial submerged and free‐floating plant beds in five comparable lakes located in the temperate zone (Denmark, 55–57 °N) and in the subtropical zone (Uruguay, 30–35 °S), with the aim to study the structure and dynamics of the main associated communities. Regardless of differences in environmental variables, such as area, water transparency and nutrient status, we found consistent patterns in littoral community dynamics and structure (i.e. densities and composition of fish, zooplankton, macroinvertebrates, and periphyton) within, but substantial differences between, the two regions. Subtropical fish communities within the macrophyte beds exhibited higher diversity, higher density, smaller size, lower relative abundance of potentially piscivores, and a preference for submerged plants, compared with otherwise similar temperate lakes. By contrast, macroinvertebrates and cladocerans had higher taxon richness and densities, and periphyton higher biomass, in the temperate lakes. Several indicators suggest that the fish predation pressure was much stronger among the plants in the subtropical lakes. The antipredator behaviour of cladocerans also differed significantly between climate zones. Submerged and free‐floating plants exerted different effects on the spatial distribution of the main communities, the effects differing between the climate zones. In the temperate lakes, submerged plants promoted trophic interactions with potentially positive cascading effects on water transparency, in contrast to the free‐floating plants, and in strong contrast to the findings in the subtropical lakes. The higher impact of fish may result in higher sensitivity of warm lakes to external changes (e.g. increase in nutrient loading or water level changes). The current process of warming, particularly in temperate lakes, may entail an increased sensitivity to eutrophication, and a threat to the high diversity, clear water state.  相似文献   

3.
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes.  相似文献   

4.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   

5.
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.  相似文献   

6.
淡水湖泊浮游藻类对富营养化和气候变暖的响应   总被引:8,自引:0,他引:8  
水体富营养化和气候变暖是淡水生态系统面临的两大威胁。文章分别阐述了富营养化和气候变暖对淡水湖泊浮游藻类直接和间接效应, 并总结气候变暖可能通过影响水体理化性质、水生植物组成、食物链结构从而直接或间接改变浮游藻类生物量或群落结构。作者重点分析了气候变暖下湖泊生态系统蓝藻水华暴发机制, 比较了不同湖泊蓝藻对气候变暖和富营养化响应的异同点, 发现气候变暖和富营养化对湖泊生态系统影响存在相似性, 表现在均促进湖泊由清水-浊水稳态转变、增加蓝藻水华发生频率和强度。然而二者对湖泊浮游藻类影响的相对重要性取决于分层型湖泊和混合型湖泊的差异性、不同营养型湖泊和不同类群蓝藻组成差异性。作者认为, 开展气候变暖和富营养化下, 湖泊浮游藻类功能群响应研究亟待进行。  相似文献   

7.
Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10–100 years) fish data series from 24 European lakes (area: 0.04–5,648 km2; mean depth: 1–177 m; a north–south gradient from Sweden to Spain). Along with an annual temperature increase of about 0.15–0.3°C per decade profound changes have occurred in either fish assemblage composition, body size and/or age structure during recent decades and a shift towards higher dominance of eurythermal species. These shifts have occurred despite a reduction in nutrient loading in many of the lakes that should have benefited the larger-sized individuals and the fish species typically inhabiting cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly affected and its abundance has decreased in the majority of the lakes where its presence was recorded. The harvest of cool-stenothermal brown trout has decreased substantially in two southern lakes. Vendace, whitefish and smelt show a different response depending on lake depth and latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, roach seems to take advantage of the higher temperature after years of low population densities. Eurythermal species such as common bream, pike–perch and/or shad are apparently on the increase in several of the lakes. The response of fish to the warming has been surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems.  相似文献   

8.
Studies on shallow lakes from the north temperate zone show that they alternate between clear and turbid water states in response to control factors. However, the ecology of semi-arid to arid shallow Mediterranean lakes is less explored. Hydrological effects (e.g. water level fluctuations, water residence time) on major ions and nutrient dynamics and processes, and ecology of submerged macrophytes appear to have a crucial role for food webs in shallow Mediterranean lakes. Nutrient control may be of greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes. This will be relevant for the implementation of the European Water Framework Directive, and conservation and management of these ecosystems. Strong trophic cascading effects of fish resulting from dominance of omnivorous and benthivorous fish species, whose diversity is usually high, together with frequent spawning and absence of efficient piscivores, seem to be the reason for the lack of large-bodied grazers that could control phytoplankton. However, such effects may vary within the region depending on fish distribution and community. These factors need elaboration in order to allow shallow lake ecologists and managers to develop better restoration strategies for eutrophicated shallow Mediterranean lakes. Consequently, modifications for the implementation of the European Water Framework Directive for determining ecological status in shallow Mediterranean lakes appear to be necessary. Furthermore, the implications of climate warming may be even more challenging than in high latitude lakes since shallow lakes in the Mediterranean region are among the most sensitive to extreme climate changes. There is an urgent need for data on the ecology of shallow lakes in the region. An appeal is made for international cooperation, development of large-scale research and information exchange to facilitate this and a web-based discussion list has been implemented.  相似文献   

9.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

10.

Global warming may intensify eutrophication of shallow lakes by affecting nutrient loading, evaporation rates, and water level and thus produce major changes in food webs. We investigated to what degree food webs in tropical humid lakes differed from those in more eutrophic semi-arid lakes of the same latitude. Our results indicate that the catchment area-to-lake area ratio, nutrients, chlorophyll a, suspended solids, abundances of phytoplankton, zooplankton, and omnivorous fish as well as total fish catch per unit effort were all higher in the semi-arid lakes, whereas inlet water-to-evaporation ratio (proxy for water balance), water transparency, percentage macrophytes cover, and the piscivores:omnivores ratio were higher in the humid lakes. Our results suggest that reduced inlet water-to-evaporation ratio will increase lake eutrophication, which, in turn, as in temperate regions, will alter trophic structure of the freshwater community.

  相似文献   

11.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   

12.
13.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   

14.
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.  相似文献   

15.
Northern lakes disproportionately influence the global carbon cycle, and may do so more in the future depending on how their microbial communities respond to climate warming. Microbial communities can change because of the direct effects of climate warming on their metabolism and the indirect effects of climate warming on groundwater connectivity from thawing of surrounding permafrost, especially at lower landscape positions. Here we used shotgun metagenomics to compare the taxonomic and functional gene composition of sediment microbes in 19 peatland lakes across a 1600-km permafrost transect in boreal western Canada. We found microbes responded differently to the loss of regional permafrost cover than to increases in local groundwater connectivity. These results suggest that both the direct and indirect effects of climate warming, which were respectively associated with loss of permafrost and subsequent changes in groundwater connectivity interact to change microbial composition and function. Archaeal methanogens and genes involved in all major methanogenesis pathways were more abundant in warmer regions with less permafrost, but higher groundwater connectivity partly offset these effects. Bacterial community composition and methanotrophy genes did not vary with regional permafrost cover, and the latter changed similarly to methanogenesis with groundwater connectivity. Finally, we found an increase in sugar utilization genes in regions with less permafrost, which may further fuel methanogenesis. These results provide the microbial mechanism for observed increases in methane emissions associated with loss of permafrost cover in this region and suggest that future emissions will primarily be controlled by archaeal methanogens over methanotrophic bacteria as northern lakes warm. Our study more generally suggests that future predictions of aquatic carbon cycling will be improved by considering how climate warming exerts both direct effects associated with regional-scale permafrost thaw and indirect effects associated with local hydrology.  相似文献   

16.
1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia. 2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months. 3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms. 4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.  相似文献   

17.
Winter fish kills can be intense under ice in shallow lakes, and have cascading effects on the food web and ultimately on lake water clarity. In maritime Western Europe, winters are usually mild, but occasional colder periods may also have strong effects on lake fish communities. Global warming may have disproportionate effects by delaying freezing and shortening the period of ice coverage. We studied differences in zooplankton (cladocerans, copepods, and rotifers): phytoplankton biomass, zooplankton community structure, and individual body size among 37 Danish lakes of various depths, chemical characteristics, and trophy, by comparing four winters of different severity (mean winter temperatures ranging from −1.19°C in 1996 to +2.9°C in 1995). We found that crustacean mean body sizes were significantly larger in the summer following a severely cold winter. The zooplankton communities in the summer after a cold winter had a significantly larger proportion of larger-bodied species and taxa. Phytoplankton biomass, expressed as chlorophyll-a (chl-a), was lower and zooplankton herbivory (chl-a:TP index), higher, in the summer after the severely cold winter of 1995/1996. All these effects were stronger in shallow lakes than in deep lakes. Changes in zooplankton during summer 1996, compared with other years, were likely caused by fish kills under ice during the preceding severe winter of 1995–1996. Fish kills due to under ice oxygen depletion would be expected to occur earlier and be more complete in the shorter water columns of shallow lakes. With climate change, severe winters are predicted to become less frequent and the winters to be milder and shorter. In general, this is likely to lead to higher winter survival of fish, lower zooplankton grazing of phytoplankton the following summer and more turbid waters, particularly in shallow eutrophic lakes.  相似文献   

18.
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distribution of species with an associated replacement of cold‐water species by warm‐water species. Such predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in species composition and abundance relative to seawater temperature. Before‐After‐Control‐Impact (BACI) analyses of the effects of a large thermal discharge shows that an induced 3.4 deg. C rise in seawater temperature over 10 years along 2 km of rocky coastline resulted in significant community‐wide changes in 150 species of algae and invertebrates relative to controls. Contrary to predictions from biogeographic models, there was no trend towards warm‐water species with southern geographic affinities replacing cold‐species with northern affinities. Instead, communities were greatly altered in apparently cascading responses to changes in abundance of several habitat‐forming taxa, particularly subtidal kelps (e.g. Pterygophora californica) and intertidal foliose red algae (e.g. Mazzaella flaccida). Many temperature sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The results indicate that the responses of temperate reef communities to ocean warming can be strongly coupled to direct effects on habitat‐forming taxa and indirect effects operating through ecological interactions. Given our understanding of temperate reef ecology and its local variability, the results also suggest that accurate predictions of the effects of global ocean warming will be difficult to make.  相似文献   

19.
Eutrophication and climate warming, induced by anthropogenic activities, are simultaneously occurring worldwide and jointly affecting soil carbon stability. Therefore, it is of great interest to examine whether and how they interactively affect soil microbial community, a major soil carbon driver. Here, we showed that climate warming, simulated by southward transferring Mollisol soil in agricultural ecosystems from the cold temperate climate zone (N) to warm temperate climate (C) and subtropical climate zone (S), decreased soil organic matter (SOM) by 6%–12%. In contrast, amendment with nitrogen, phosphorus and potassium enhanced plant biomass by 97% and SOM by 6% at the N site, thus stimulating copiotrophic taxa but reducing oligotrophic taxa in relative abundance. However, microbial responses to nutrient amendment were overridden by soil transfer in that nutrient amendment had little effect at the C site but increased recalcitrant carbon‐degrading fungal Agaricomycetes and Microbotryomycetes taxa derived from Basidiomycota by 4‐17 folds and recalcitrant carbon‐degrading genes by 23%–40% at the S site, implying a possible priming effect. Consequently, SOM at the S site was not increased by nutrient amendment despite increased plant biomass by 108%. Collectively, we demonstrate that soil transfer to warmer regions overrides microbial responses to nutrient amendment and weakens soil carbon sequestration.  相似文献   

20.
Fish are important in the structuring of other communities and may have large effects on the functioning of aquatic ecosystems. The structure of fish communities, in turn, seems to differ with climate. We compared the characteristics of fish assemblages in lowland streams located in two contrasting climates (cold-temperate Europe and subtropical South America) by use of published and unpublished data on streams of similar depth, width, and slope (n total?=?91 streams). We also selected a subset of seven comparable little-affected streams in the two contrasting climates: temperate (Denmark, 55°?C57°N, Dk) and subtropical (Uruguay, 30°?C35°S, Uy) and compared the fish community structures in relation to environmental characteristics. We then analysed a series of potential explanatory factors behind the patterns observed, in particular the effect of ambient temperature, by comparing temperature-corrected community metabolism. Significantly higher species richness, higher densities, lower biomass, smaller mean body size, and lower mean weight of fish were observed for the subtropical streams than for the temperate streams, both in the literature review and in the subset of streams. Several characteristics of fish assemblages in streams may be explained by direct and indirect effects of temperature. Accordingly, fish in subtropical systems had a temperature-corrected community metabolism I?m?2 equal to that of fish in temperate systems, indicating that temperature, besides historical factors, is an important driver of different size structures. Our findings concur with differences previously found in littoral areas of shallow lakes, suggesting that these patterns are not restricted to running waters. Our results elucidate how fish community structure might be affected by increases in temperature triggered by climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号