首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  1. Outbreaks of insect pest populations are common and can have devastating effects on natural communities and on agriculture. Little is known about the causes of these outbreaks or the causes of en masse migrations during outbreaks.
2. Flightless Mormon crickets ( Anabrus simplex ) were the focus of this study. They are a katydid species that forms large, dense, mobile groups (migratory bands) during outbreak periods, eating vegetation in their path.
3. Radiotelemetric methods were used to measure differences in movement rate and directionality in outbreak and non-outbreak populations, testing the hypothesis that these populations differ in their travel rate and consistency of direction.
4. Daily individual movement in outbreak populations differs substantially from non-outbreak populations that are at much lower density. In addition to large differences in distances travelled (1.6 km as compared with 1 m) and rates of travel, there is evidence for collective movement among individual Mormon crickets travelling in migratory bands.
5. These data suggest that the direction of group movement may be influenced by local environmental conditions such as wind direction and movement of nearby band members. This work forms the basis for ongoing work testing hypotheses about mass migrations in outbreak populations.  相似文献   

2.
1.?An innate migration strategy guides birds through space and time. Environmental variation further modulates individual behaviour within a genetically determined frame. In particular, ecological barriers could influence departure direction and its timing. A shift in the migratory direction in response to an ecological barrier could reveal how birds adjust their individual trajectories to environmental cues and body condition. 2.?Northern wheatears of the Greenland/Iceland subspecies Oenanthe oenanthe leucorhoa arrive in Western Europe en route from their West African winter range. They then undergo an endogenously controlled shift in migratory direction from north to north-west to cross a large ecological barrier, the North Atlantic. We radiotracked these songbirds departing from Helgoland, a small island in the North Sea, over an unprecedented range of their journey. 3.?Here, we show that both birds' body condition and the wind conditions that they encountered influenced the departure direction significantly. Jointly high fuel loads and favourable wind conditions enabled migrants to cross large stretches of sea. Birds in good condition departed early in the night heading to the sea towards their breeding areas, while birds with low fuel loads and/or flying in poor weather conditions departed in directions leading towards nearby mainland areas during the entire night. These areas could be reached even after setting off late at night. 4.?Behavioural adjustment of migratory patterns is a critical adaptation for crossing ecological barriers. The observed variation in departure direction and time in relation to fuel load and wind revealed that these birds have an innate ability to respond by jointly incorporating internal information (body condition) and external information (wind support).  相似文献   

3.
We used radio-telemetry to study autumn migratory flight initiation and orientation in relation to wind and air pressure in a nocturnal passerine migrant, the reed warbler Acrocephalus scirpaceus at Falsterbo, southwest Sweden. The majority of the reed warblers departed in the expected migratory direction towards south of southwest, while a low number of the birds took off in reverse directions between north and east. Flight directions at departure correlated with wind directions. These correlations were particularly prominent at higher wind speeds but were absent at wind speeds below 4 m/s. Birds departing in the expected migratory direction compensated completely for wind drift. The reed warblers preferred to depart during nights with tailwinds and when air pressure was increasing suggesting that reed warblers are sensitive to winds and air pressure and select favourable wind conditions for their migratory flights. Since air pressure as well as velocity and direction of the wind are correlated with the passage of cyclones, a combination of these weather variables is presumably important for the birds' decision to migrate and should therefore be considered in optimal migration models.  相似文献   

4.
We used radiotelemetry to investigate the time of migratory flight initiation relative to available celestial orientation cues and departure direction of a nocturnal passerine migrant, the reed warbler, Acrocephalus scirpaceus, during autumn migration. The study was carried out at Falsterbo, a coastal site in southwest Sweden. The warblers initiated migration from times well after local sunset and well into the night, corresponding to sun elevations between -4 degrees and -35 degrees, coinciding with the occurrence of stars at night. They departed in the expected migratory direction towards south of southwest with a few initiating migration in reverse directions towards northeast to east. Flight directions under overcast conditions (7-8/8) were more scattered than under clear sky conditions (0-4/8). There were fewer clouds on departure nights than on nights when the birds did not initiate migration. For birds staying longer than one night at stopover the horizontal visibility was higher and precipitation was less likely on departure nights than on the previous night. The results show that the visibility of celestial cues, and stars in particular, are important for the decision to initiate migration in reed warblers. However, cloud cover, horizontal visibility and precipitation might be correlated with other weather variables (i.e. wind or air pressure) that are also likely to be important for the decision to migrate. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

5.
1. Mormon crickets form large migratory bands that march over rangeland in the western United States seeking salt and protein. Immune defence is particularly relevant to survival in migratory bands, but little is known about the role of nutrition in insect immunocompetence. We hypothesised that immune defences are compromised in these migratory bands due to nutrient limitations. 2. In a migratory band in Utah, we investigated whether access to a protein relative to a carbohydrate diet would immediately reduce migratory activity, as had been shown for Mormon crickets in a previous study in Idaho, and whether the protein diet would enhance immune defence responses. 3. Radio‐tracking Mormon crickets in the field, we found that locomotor activity was significantly and positively associated with body mass. Body mass‐adjusted locomotor activity declined marginally following access to a protein diet, whereas spontaneous phenoloxidase (PO) activity was enhanced by the same diet. The encapsulation response and lysozyme‐like activity were directly proportional to body mass, but unaffected by the dietary treatments in the short term. Within 6 h of feeding on protein or carbohydrates, Mormon crickets exhibited measurable effects on the immune system. 4. We conclude that nutrition impacts immune function in migrating insects in the field. Spontaneous PO activity may be limited by dietary deficiency in a protein‐seeking band of Mormon crickets.  相似文献   

6.
Cannibalism has been shown to be important to the collective motion of mass migratory bands of insects, such as locusts and Mormon crickets. These mobile groups consist of millions of individuals and are highly destructive to vegetation. Individuals move in response to attacks from approaching conspecifics and bite those ahead, resulting in further movement and encounters with others. Despite the importance of cannibalism, the way in which individuals make attack decisions and how the social context affects these cannibalistic interactions is unknown. This can be understood by examining the decisions made by individuals in response to others. We performed a field investigation which shows that adult Mormon crickets were more likely to approach and attack a stationary cricket that was side-on to the flow than either head- or abdomen-on, suggesting that individuals could reduce their risk of an attack by aligning with neighbours. We found strong social effects on cannibalistic behaviour: encounters lasted longer, were more likely to result in an attack, and attacks were more likely to be successful if other individuals were present around a stationary individual. This local aggregation appears to be driven by positive feedback whereby the presence of individuals attracts others, which can lead to further crowding. This work improves our understanding of the local social dynamics driving migratory band formation, maintenance and movement at the population level.  相似文献   

7.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

8.
The direction and magnitude of movement by the malaria vector Anopheles gambiae Giles has been of great interest to medical entomologists for over 70 years. This direction of movement is likely to be affected by many factors, from environmental conditions and stage of life history of the mosquito to the existence of attractants in the vicinity. We report here the direction of movement of newly emerged An. gambiae in nature, around the village of Donéguébougou, Mali. We assessed the direction of movement for individual mosquitoes by placing them in a novel enclosure with exit traps oriented in the direction of the cardinal and intermediate points of the compass. We consistently found predominantly Southward directions of movement during 2009 and 2010, with an additional Eastward component during the dry season and a Westward one during the wet season. Our data indicate that wind has an important effect on the direction of movement, but that this effect varied by season: Average directions of movement were downwind during the dry season and upwind during the wet season. A switch in anemotactic response suggests that the direction of movement of An. gambiae relative to the wind immediately after emergence under varying conditions of humidity should be further investigated under controlled conditions.  相似文献   

9.
Thomas  Alerstam Staffan  Ulfstrand 《Ibis》1974,116(4):522-542
The migration of Wood Pigeons in southern Scandinavia was studied from 21 September to 10 October 1971 and from 16 September to 15 November 1972 using radar stations supplemented with observations from an aircraft and a network of ground observers. By far the largest quantities of Wood Pigeons migrated after cold front passages with northwesterly to northeasterly tailwinds. Most birds departed on a few days, apparently as a consequence of strong preference for tailwind situations. With northwesterly winds a proportionately high migratory activity was recorded in the Kattegatt area. With northeasterly winds activity was higher in the Baltic area. This allowed the Wood Pigeons to make maximal use of the tailwind component, and their ground speed usually exceeded 80 km/h. The calculated mean air speed was 60 km/h. Their dependence on tailwind was particularly strong when the birds were engaging in long sea-crossings, such as across the Kattegatt. Different coastlines affected the geographical pattern of migration in different ways. Frequently Wood Pigeon flocks flew almost parallel to the coast but some distance off shore, until they finally departed. The deflective force of coastlines was greatest when the birds' ground speed was low, that is, under headwind conditions or in calm weather. Mean track directions measured over two areas in northern Skane, called Inland W and Inland E, situated about 60 km apart, differed by 11, those over the western area being directed more to the south than those over the eastern. No significant correlation with wind directions was found in these areas. Combining data from the whole land area, however, track directions were found to vary from day to day in significant correlation to the wind direction. Mean track directions over the Baltic agreed with those over Skane, but both differed significantly from those over the Kattegatt. Both over the Baltic and over the Kattegatt directions were significantly correlated with wind directions, and showed greater variation than track directions over land. Daily track differences over the Baltic resulted both from differences taking place over the land, and from real wind deflection (drift). Both over the land and over the sea heading directions were correlated with wind directions, suggesting compensatory efforts on the part of the birds. On three days extensive fog covered much of the study area. Wood Pigeons continued to migrate, but certain aberrations in their behaviour were noted. Over land migration was relatively heavier in the west with northwesterly winds and in the east with northeasterly winds. The correlation demonstrated between wind direction and the mean track direction was based upon the fact that populations with different inherent primary directions made up different proportions of the migrating cohorts under different wind conditions (pseudo-drift). The incomplete compensation for wind deflection over the sea is ascribed to the lack of visual orientation cues. The more accurate orientation possible over land suggests one reason for the birds' reluctance to flights across the open sea. When mean track directions of Wood Pigeons in different parts of southern Scandinavia were related to the migratory goals of these birds, it was found that they have to change their primary direction in the course of their journey from breeding to wintering areas.  相似文献   

10.
Whether migrating birds compensate for wind drift or not is a fundamental question in bird migration research. The procedures to demonstrate and quantitatively estimate wind drift or compensation are fraught with difficulties and pitfalls. In this paper, we evaluate four methods that have been used in several studies over the past decades. We evaluate the methods by analysing a model migratory movement with a realistic scatter in flight directions, for the ideal cases of full drift and complete compensation. Results obtained with the different methods are then compared with the "true behaviour" of the model movement, illustrating that spurious patterns of drift and compensation arise in some cases. We also illustrate and evaluate the different methods of estimating drift for a real case, based on tracking radar measurements of bird migration in relation to winds. Calculating the linear regression of mean geographic track (resulting flight direction) and heading directions (directions of the birds' body axis) of a migratory movement under different wind conditions in relation to the angle alpha (the angle between mean track and heading) always provides robust and reliable results. Comparing mean flight directions between occasions with winds from the left and right of the mean flight direction of the whole migratory movement also always provides expected and correct measures of drift. In contrast, regressions of individual flight directions in relation to alpha (the angle between track and heading for the specific individuals or flocks) are liable to produce biased and spurious results, overestimating compensation/overcompensation if following winds dominate in the analysis and overestimating drift/overdrift if opposed winds are dominating. Comparing mean directions for cases with winds from the left and right in relation to individual flight directions also gives biased and spurious results unless there is full variation in wind directions or an equal distribution of crosswinds from left and right. The results of the methodological evaluation and the analysis of the real case indicate that some earlier analyses of wind drift may have to be re-evaluated.  相似文献   

11.
Nocturnal avian migration flyways remain an elusive concept, as we have largely lacked methods to map their full extent. We used the network of European weather radars to investigate nocturnal bird movements at the scale of the European flyway. We mapped the main migration directions and showed the intensity of movement across part of Europe by extracting biological information from 70 weather radar stations from northern Scandinavia to Portugal, during the autumn migration season of 2016. On average, over the 20 nights and all sites, 389 birds passed per 1 km transect per hour. The night with highest migration intensity showed an average of 1621 birds km–1 h–1 passing the radar stations, but there was considerable geographical and temporal variation in migration intensity. The highest intensity of migration was seen in central France. The overall migration directions showed strong southwest components. Migration dynamics were strongly related to synoptic wind conditions. A wind‐related mass migration event occurred immediately after a change in wind conditions, but quickly diminished even when supporting winds continued to prevail. This first continental‐scale study using the European network of weather radars demonstrates the wealth of information available and its potential for investigating large‐scale bird movements, with consequences for ecosystem function, nutrient transfer, human and livestock health, and civil and military aviation.  相似文献   

12.
《Animal behaviour》1988,36(3):877-887
The migratory orientation of the robin was tested in shifted magnetic fields during the twilight period after sunset, under clear skies and under simulated total overcast. The horizontal direction of the geomagnetic field was shifted 90° to the right or left in relation to the local magnetic field, without changing either the intensity of the field or its angle of inclination. Experiments were conducted during both spring and autumn, with robins captured as passage migrants at the Falsterbo and Ottenby bird observatories in southern Sweden as test subjects. Generally, the orientation of robins was affected by magnetic shifts compared to controls tested in the natural geomagnetic field. Autumn birds from the two capture sites differed in their responses, probably because of different migratory dispositions and body conditions. The robins most often changed their orientation to maintain their typical axis of migration relative to the shifted magnetic fields. However, preferred directions in relation to the shifted magnetic fields were frequently reverse from normal, or axial rather than unimodal. These results disagree with suggested mechanisms for orientation by visual sunset cues and with the proposed basis of magnetic orientation. They do, however, demonstrate that the geomagnetic field is involved in the sunset orientation of robins, probably in combination with additional visual or non-visual cues that contribute to establish magnetic polarity.  相似文献   

13.
Studying migratory behavior of bats is challenging. Thus, most information regarding their migratory behavior is anecdotal. Recently, however, fatalities of migratory bats at some wind energy facilities across North America have provided the opportunity and impetus to study bat migration at fine spatial and temporal scales. Using acoustic monitoring and carcass searches, we examined temporal and spatial variation in activity levels and fatality rates of bats at a wind energy facility in southern Alberta, Canada. Our goals were to better understand the influence of weather variables and turbine location on the activity and fatality of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), and to use that understanding to predict variation in fatality rates at wind energy facilities and recommend measures to reduce fatalities. Overall activity of migratory bats and of silver-haired bats increased in low wind speeds and warm ambient temperatures, and was reduced when the wind was from the North or Northeast, whereas hoary bat activity increased with falling barometric pressure. Fatalities of migratory bats in general increased with increased activity of migratory bats, increased moon illumination, and falling barometric pressure and were influenced by the interaction between barometric pressure change and activity. Fatalities of silver-haired bats increased with increased activity, moon illumination, and winds from the south-east. Hoary bat fatalities increased with falling barometric pressure. Our results indicate that both the activity and fatality of migratory bats are affected by weather variables, but that species differ in their responses to environmental conditions. Spatially, fatalities were not influenced by the position of turbines within a turbine row, but were influenced by the location of turbines within the facility. Our findings have implications for our understanding of bat migration and efforts to reduce fatalities at wind energy facilities. To maximize the reduction of bat fatalities, operators of wind energy facilities could incorporate migratory bats' response to environmental variables, such as barometric pressure and fraction of moon illuminated, into their existing mitigation strategies. © 2011 The Wildlife Society.  相似文献   

14.
The migratory direction in young passerine migrants is based on innate information, with the geomagnetic field and celestial rotation as references. To test whether the direction of celestial rotation is of importance, hand-raised pied flycatchers in Latvia were exposed during the premigratory period to a planetarium rotating in different directions. During autumn migration, when their orientation behavior was recorded in the local geomagnetic field in the absence of celestial cues, birds that had been exposed to a sky rotating in the natural direction showed a unimodal preference of their south-westerly migratory direction. Birds that had been exposed to a sky rotating in the reversed direction, in contrast, showed a bimodal preference of an axis south-west-north-east. Their behavior was similar to that of pied flycatchers that had been raised without access to celestial cues. In Latvia, the magnetic field alone allows only orientation along the migratory axis, and celestial rotation enables birds to select the correct end of this axis. Our findings show that the direction of rotation is of crucial importance: celestial rotation is effective only if the stars move in the natural direction.  相似文献   

15.
Tracking radar and visual observation techniques were used to observe the orientation of free-flying passerine nocturnal migrants in situations in which potentially usable directional cues were absent or gave conflicting information. When migrants had seen the sun near the time of sunset and/or the stars, they oriented in appropriate migratory directions even when winds were opposed. Under solid overcast skies that prevented a view of both sun and stars, the birds headed downwind in opposing winds and thus moved in seasonally inappropriate directions. The data point to the primacy of visual cues over wind direction, with either sun or stars being sufficient to allow the birds to determine the appropriate migration direction.  相似文献   

16.
High-quality staging sites are critical for long-distance migratory shorebirds to rest and refuel but are under threat from human development, including expansion of wind energy projects. However, predicting migration timing and movements in relation to weather conditions at staging sites can increase our understanding and mitigate effects of wind turbine collisions. Here we assessed northward migration timing and orientation in relation to environmental conditions at an inland staging area in Saskatchewan, Canada, with active and proposed wind energy developments. The area is known to host ~25% of North America's Sanderling Calidris alba population and 16 other Arctic-breeding migrant shorebird species. We quantified arrival and departure time of day in relation to weather using data from 140 of 237 Sanderlings radiotagged locally and at a southern staging site in the Gulf of Mexico with the Motus Wildlife Tracking System (April–June, 2015–2017). Although Sanderling arrival times were not related to time of day or weather, departures were more likely at sunset in winds blowing towards the northwest at intermediate speeds (<22 km/h). Departure flights were also primarily oriented north-northwest in the direction of a proposed wind energy development site at a mean ground speed of 21.4 m/s. Based on published climb rates and flight speed data, we estimated that shorebirds needed between 2 and 14 km setback distance to clear maximum turbine heights of 165 m. Given that departure events were predictable in time and space, adaptive mitigation may be useful for planning wind energy developments while reducing risk for staging Arctic-breeding shorebirds.  相似文献   

17.
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well‐studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non‐olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.  相似文献   

18.
Long‐distance migratory flights are predicted to be associated with higher mortality rates when individuals encounter adverse weather conditions. However, directly connecting environmental conditions experienced in‐flight with the survival of migrants has proven difficult. We studied how the in‐flight mortality of 53 satellite‐tagged Black‐tailed Godwits (Limosa limosa limosa) during 132 crossings of the Sahara Desert, a major geographical barrier along their migration route between The Netherlands and sub‐Saharan Africa, is correlated with the experienced wind conditions and departure date during both southward and northward migration. We show that godwits experienced higher wind assistance during southward crossings, which seems to reflect local prevailing trade winds. Critically, we found that fatal northward crossings (15 deaths during 61 crossings) were associated with adverse wind conditions. Wind conditions during migration can thus directly influence vital rates. Changing wind conditions associated with global change may thus profoundly influence the costs of long‐distance migration in the future.  相似文献   

19.
Migration phenology is largely determined by how animals respond to seasonal changes in environmental conditions. Our perception of the relationship between migratory behavior and environmental cues can vary depending on the spatial scale at which these interactions are measured. Understanding the behavioral mechanisms behind population‐scale movements requires knowledge of how individuals respond to local cues. We show how time‐to‐event models can be used to predict what factors are associated with the timing of an individual's migratory behavior using data from GPS collared polar bears (Ursus maritimus) that move seasonally between sea ice and terrestrial habitats. We found the concentration of sea ice that bears experience at a local level, along with the duration of exposure to these conditions, was most associated with individual migration timing. Our results corroborate studies that assume thresholds of >50% sea ice concentration are necessary for suitable polar bear habitat; however, continued periods (e.g., days to weeks) of exposure to suboptimal ice concentrations during seasonal melting were required before the proportion of bears migrating to land increased substantially. Time‐to‐event models are advantageous for examining individual movement patterns because they account for the idea that animals make decisions based on an accumulation of knowledge from the landscapes they move through and not simply the environment they are exposed to at the time of a decision. Understanding the migration behavior of polar bears moving between terrestrial and marine habitat, at multiple spatiotemporal scales, will be a major aspect of quantifying observed and potential demographic responses to climate‐induced environmental changes.  相似文献   

20.
Migratory hoverflies are long-range migrants that, in the Northern Hemisphere, move seasonally to higher latitudes in the spring and lower latitudes in the autumn. The preferred migratory direction of hoverflies in the autumn has been the subject of radar and flight simulator studies, while spring migration has proved to be more difficult to characterize owing to a lack of ground observations. Consequently, the preferred migratory direction during spring has only been inferred from entomological radar studies and patterns of local abundance, and currently lacks ground confirmation. Here, during a springtime arrival of migratory insects onto the Isles of Scilly and mainland Cornwall, UK, we provide ground proof that spring hoverfly migrants have an innate northward preference. Captured migratory hoverflies displayed northward vanishing bearings when released under sunny conditions under both favourable wind and zero-wind conditions. In addition, and unlike autumn migrants, spring individuals were also able to orientate when the sun was obscured. Analysis of winds suggests an origin for insects arriving on the Isles of Scilly as being in western France. These findings of spring migration routes and preferred migration directions are likely to extend to the diverse set of insects found within the western European migratory assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号