首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

3.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

4.
Na+/H+ antiporters   总被引:41,自引:0,他引:41  
Na+/H+ antiports or exchange reactions have been found widely, if not ubiquitously, in prokaryotic and eukaryotic membranes. In any given experimental system, the multiplicity of ion conductance pathways and the absence of specific inhibitors complicate efforts to establish that the antiport observed actually results from the activity of a specific secondary porter which catalyzes coupled exchanged of the two ions. Nevertheless, a large body of evidence suggests that at least some prokaryotes possess a delta psi-dependent, mutable Na+/H+ antiporter which catalyzes Na+ extrusion in exchange for H+; in other bacterial species, the antiporter my function electroneutrally, at least at some external pH values. The bacterial Na+/H+ antiporter constitutes a critical limb of Na+ circulation, functioning to maintain a delta mu Na+ for use by Na+-coupled bioenergetic processes. The prokaryotic antiporter is also involved in pH homeostasis in the alkaline pH range. Studies of mutant strains that are deficient in Na+/H+ antiporter activity also indicate the existence of a relationship, e.g., a common subunit or regulatory factor, between the Na+/H+ antiporter and Na+/solute symporters in several bacterial species. In eukaryotes, an electroneutral, amiloride-sensitive Na+/H+ antiport has been found in a wide variety of cell and tissue types. Generally, the normal direction of the antiport appears to be that of Na+ uptake and H+ extrusion. The activity is thus implicated as part of a complex system for Na+ circulation, e.g., in transepithelial transport, and might have some role in acidification in the renal proximal tubule. In many experimental systems, the Na+/H+ antiport appears to influence intracellular pH. In addition to a role in general pH homeostasis, such Na+-dependent changes in intracellular pH could be part of the early events in a variety of differentiating and proliferative systems. Reconstitution and structural studies, as well as detailed analysis of gene loci and products which affect the antiport activity, are in their very early stages. These studies will be important in further clarification of the precise structural nature and role(s) of the Na+/H+ antiporters. In neither prokaryotes nor eukaryotes systems is there yet incontrovertible evidence that a specific protein carrier, that catalyzes Na+/H+ antiport, is actually responsible for any of the multitude of effects attributed to such antiporters. The Na+-H+ exchange might turn out to be side reactions of other porters or the additive effects of several conductance pathways; or, as appears most likely in at least some bacteria and in renal tissue, the antiporter may be a discrete, complex carr  相似文献   

5.
The NHE4 Na+/H+ exchanger is abundantly expressed on the basolateral membrane of gastric parietal cells. To test the hypothesis that it is required for normal acid secretion, NHE4-null mutant (NHE4-/-) mice were prepared by targeted disruption of the NHE4 (Slc9a4) gene. NHE4-/- mice survived and appeared outwardly normal. Analysis of stomach contents revealed that NHE4-/- mice were hypochlorhydric. The reduction in acid secretion was similar in 18-day-old, 9-week-old, and 6-month-old mice, indicating that the hypochlorhydria phenotype did not progress over time, as was observed in mice lacking the NHE2 Na+/H+ exchanger. Histological abnormalities were observed in the gastric mucosa of 9-week-old NHE4-/- mice, including sharply reduced numbers of parietal cells, a loss of mature chief cells, increased numbers of mucous and undifferentiated cells, and an increase in the number of necrotic and apoptotic cells. NHE4-/- parietal cells exhibited limited development of canalicular membranes and a virtual absence of tubulovesicles, and some of the microvilli had centrally bundled actin. We conclude that NHE4, which may normally be coupled with the AE2 Cl-/HCO3- exchanger, is important for normal levels of gastric acid secretion, gastric epithelial cell differentiation, and development of secretory canalicular and tubulovesicular membranes.  相似文献   

6.
7.
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain.

  相似文献   

8.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

9.
Na+/H+ antiporters are universal devices involved in the Na+ and H+ circulation of both eukaroyotes and prokaryotes, thus playing an essential role in the pH and Na+ homeostasis of cells. This review focuses on the major impact of the application of molecular biology tools in the study of the antiporters. These tools permit the verification of the role of the antiporters and provide insights into their unique biology. A novel signal transduction to Na+ involvingnhaR, a positive regulator, controls the expression ofnhaA inE. coli. A pH sensor regulates the activity of Na+/H+ antiporters, both in eukaryotes and prokaryotes. A most intricate signal transduction to pH involving phosphorylation steps controls the activity ofnhel in higher mammals. The identification of Histidine 226 in the pH sensor of NhaA is a step forward towards the understanding of the pH regulation of these proteins.  相似文献   

10.
钠氢交换蛋白是一类存在于细胞膜表面的离子转运泵蛋白家族.它负责将细胞内H 与胞外Na 按照1:1的比例进行交换来调控细胞内pH的动态平衡,影响细胞的容积、运动、分化、凋亡和营养吸收,从而参与许多复杂的生理和病理过程.迄今为止,钠氢交换蛋白家族已发现有9个成员,各亚型间具有结构相似性和组织分布特异性.深入研究NHE的结构、功能及基因表达调控,将为人和哺乳动物的营养生理、疾病治疗提供新的思路和方法.  相似文献   

11.
12.
This study was undertaken to evaluate whether a link exists between the activation of protein kinase C (PKC), operation of Na(+)/H(+) exchanger (NHE), cell swelling and serotonin (5-HT) secretion in porcine platelets. Activation of platelets by thrombin or phorbol 12-myristate 13-acetate (PMA), a PKC activator, initiated a rapid rise in the activity of Na(+)/H(+) exchanger and secretion of 5-HT. Both thrombin- and PMA-evoked activation of Na(+)/H(+) exchanger was less pronounced in the presence of ethyl-isopropyl-amiloride (EIPA), an NHE inhibitor, and by GF 109203X, a PKC inhibitor. Monensin (simulating the action of NHE) caused a dose-dependent release of 5-HT that was not abolished by GF 109203X or EGTA. Lack of Na(+) in the suspending medium reduced thrombin-, PMA-, and monensin-evoked 5-HT secretion. GF 109203X nearly completely inhibited 5-HT release induced by PMA-, partly that induced by thrombin, and had no effect on 5-HT release induced by monensin. EIPA partly inhibited 5-HT release induced by thrombin and nearly totally that evoked by PMA. Electronic cell sizing measurements showed an increase in mean platelet volume upon treatment of cells with monensin, PMA or thrombin. The PMA- and thrombin-evoked rise in mean platelet volume was strongly reduced in the presence of EIPA. As judged by optical swelling assay monensin and PMA produced a rapid rise in platelet volume. The swelling elicited by PMA was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Hypoosmotically evoked platelet swelling did not affect platelet aggregation but significantly potentiated thrombin-evoked release of 5-HT and ATP. Taken together, these results show that in porcine platelets PKC may promote 5-HT secretion through the activation of NHE. It is hypothesized that enhanced Na(+)/H(+) antiport may result in a rise in cell membrane tension (due to cell swelling) which in turn facilitates fusion of secretory granules with the plasma membrane leading to 5-HT secretion.  相似文献   

13.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

14.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

15.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

16.
17.
盐胁迫是限制植物生长发育的主要因素之一,植物Na+/H+反向转运蛋白可通过将Na+逆向转运出细胞外或将Na+区隔化于液泡中来抵制环境中过高的Na+浓度.植物中Na+/H+反向转运蛋白存在于细胞质膜和液泡膜上,现在已得到多种编码这些Na+/H+反向转运蛋白的基因,对其结构功能特性进行了大量研究,并发现将这些基因转入非抗盐植物中过量表达可提高转基因植物的抗盐性.概述了Na+/H+反向转运蛋白及其编码基因的最新研究进展.  相似文献   

18.
Na+/H+ exchange in the cyanobacterium Synechococcus 6311   总被引:9,自引:0,他引:9  
The cyanobacterium Synechococcus 6311 adapts to grow in 0.6 M NaCl by developing an efficient system for sodium extrusion. In the present investigation cells loaded with NaC1 were subjected to a large dilution. Changes in fluorescence quenching of acridine orange as a function of transmembrane Na+ gradients provide evidence that Na+/H+ exchange activity greatly enhanced in salt-adapted cells.  相似文献   

19.
Na+-inhibitory sites of the Na+/H+ exchanger are Li+ substrate sites   总被引:1,自引:0,他引:1  
Amiloride-inhibitable Li+ influx in dog red blood cells is mediated by the Na+/H+ exchanger, NHE. However, there are substantial differences between the properties of Li+ transport and Na+ transport through the NHE. Li+ influx is activated by cell shrinkage, and Na+ influx is not, as we reported previously (Dunham PB, Kelley SJ, and Logue PJ. Am J Physiol Cell Physiol 287: C336-C344, 2004). Li+ influx is a sigmoidal function of its concentration, and Na+ activation is linear at low Na+ concentrations. Li+ does not inhibit its own influx; in contrast, Na+ inhibits Na+ influx. Li+ prevents this inhibition by Na+. Na+ is a mixed or noncompetitive inhibitor of Li+ influx, implying that both a Na+ and a Li+ can be bound at the same time. In contrast, Li+ is a competitive inhibitor of Na+ influx, suggesting Li+ binding at one class of sites on the transporter. Because the properties of Li+ transport and Na+ transport are different, a simple explanation is that Na+ and Li+ are transported by separate sites. The similarities of the properties of Li+ transport and the inhibition of Na+ transport by Na+ suggest that Li+ is transported by the Na+-inhibitory sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号