首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ring-substituted 3-phenylpropenes has been examined as mechanism-based inhibitors for the copper protein dopamine beta-hydroxylase. p-HO-, p-CH3O-, m-HO-, m-CH3O-, p-Br-, and p-CN-substituted phenylpropenes all inactivate the enzyme under turnover conditions, requiring ascorbate and oxygen. Replacement of the benzylic hydrogens in 3-(p-hydroxyphenyl)propene with deuterium results in a kinetic isotope effect of 2.0 on kinact/KO2 but in no effect on the partition ratio, Vmax/kinact, consistent with a stepwise mechanism for hydrogen abstraction and oxygen insertion. The partition ratio is unchanged in the pH range from 4.5 to 7.1. Determination of the kinetics of inactivation and the partition ratios for each of these ring-substituted phenylpropenes has allowed determination of the respective V/KO2 values. A linear free energy plot of these values as a function of sigma+ gives a rho value of -1.2, while the partition ratios show only a slight decrease upon going electron-withdrawing groups. The results are consistent with a mechanism for dopamine beta-hydroxylase in which a hydrogen atom is abstracted to form a benzylic radical, which then partitions between hydroxylation and enzyme inactivation.  相似文献   

2.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which enzyme-bound alpha-aminoacetophenone is generated, followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the enzyme inhibitory species (Mangold, J. B., and Klinman, J. P. (1984) J. Biol. Chem. 259, 7772-7779). If correct, additional compounds capable of producing enzyme-bound (formula; see text) reductant should inhibit dopamine beta-monooxygenase. Phenylacetaldehyde was chosen to test this model, since beta-hydroxyphenylacetaldehyde is expected to function as a reductant in a manner analogous to alpha-aminoacetophenone. Phenylacetaldehyde exhibits the properties of a mechanism-based inhibitor. Kinetic parameters are comparable to beta-chlorophenethylamine under both initial velocity and inactivation conditions. Since phenylacetaldehyde bears little resemblance to beta-chlorophenethylamine, its analogous inhibitory action provides support for an intramolecular redox reaction (via beta-hydroxyphenylacetaldehyde oxidation to a radical cation) in dopamine beta-monooxygenase inactivation. beta-Hydroxyphenylacetaldehyde was identified as the enzymatic product of phenylacetaldehyde turnover. As predicted, this product behaves both as a time-dependent inhibitor of dopamine beta-monooxygenase and as an electron donor in enzyme-catalyzed hydroxylation of tyramine to octopamine. Phenylacetamide and p-hydroxyphenylacetamide are also found to be mechanism-based inhibitors of dopamine beta-monooxygenase. In this case the product of hydroxylation (beta-hydroxyphenylacetamide) is redox inactive and, therefore, is unable to function as either a reductant or an inhibitor. Thus, mechanism-based inhibitors are divided into two types: type I, which undergoes hydroxylation prior to inactivation, and type II, which only requires hydrogen atom abstraction. A general mechanism for dopamine beta-monooxygenase inactivation is described, in which a common mechanistic radical intermediate is formed from both pathways.  相似文献   

3.
Dopamine beta-hydroxylase is inactivated by phenyl-, phenethyl-, benzyl-, and methylhydrazine, but not by hydrazine itself. With phenyl-, methyl-, and phenethylhydrazine, the rate of inactivation decreases in the presence of ascorbate and increases in the presence of tyramine. Reduction of the enzyme-bound copper occurs with all of the hydrazines tested. In the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone the carbon-centered radicals generated from each compound are trapped. This is consistent with reduction of the enzyme-bound copper by the hydrazine-containing compounds, resulting in formation of the hydrazine cation radical. Homolytic cleavage of the carbon-nitrogen bond then generates a carbon-centered radical which reacts with the enzyme, resulting in inactivation. Inactivation with [14C]phenylhydrazine results in the incorporation of 0.94 molecule of label per enzyme subunit. Benzylhydrazine behaves as a mechanism-based inhibitor of the enzyme. Both benzyl- and phenethylhydrazine are substrates for dopamine beta-hydroxylase. The second-order rate constant for inactivation of dopamine beta-hydroxylase by benzylhydrazine in the presence of ascorbate is increased about 4-fold when the benzylic hydrogens are replaced with deuterium. The apparent Vmax shows an observed deuterium kinetic isotope effect of 13 +/- 2. The partition ratio for product formation versus inactivation is 11-fold less for alpha,alpha-d2-benzylhydrazine. These results are interpreted in terms of a model where inactivation is due to abstraction of an electron from nitrogen instead of abstraction of a hydrogen atom from the benzylic carbon.  相似文献   

4.
Cytochrome P450 enzymes catalyze a number of oxidations in nature including the difficult hydroxylations of unactivated positions in an alkyl group. The consensus view of the hydroxylation reaction 10 years ago was that a high valent iron-oxo species abstracts a hydrogen atom from the alkyl group to give a radical that subsequently displaces the hydroxy group from iron in a homolytic substitution reaction (hydrogen abstraction-oxygen rebound). More recent mechanistic studies, as summarized in this review, indicated that the cytochrome P450-catalyzed "hydroxylation reaction" is complex, involving multiple mechanisms and multiple oxidants. In addition to the iron-oxo species, another electrophilic oxidant apparently exists, either the hydroperoxo-iron intermediate that precedes iron-oxo or iron-complexed hydrogen peroxide formed by protonation of the hydroperoxo-iron species on the proximal oxygen. The other electrophilic oxidant appears to react by insertion of OH(+) into a C-H bond to give a protonated alcohol. Computational work has suggested that iron-oxo can react through multiple spin states, a low-spin ensemble that reacts by insertion of oxygen, and a high-spin ensemble that reacts by hydrogen atom abstraction to give a radical.  相似文献   

5.
Shah DD  Conrad JA  Heinz B  Brownlee JM  Moran GR 《Biochemistry》2011,50(35):7694-7704
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) each catalyze similar complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. The reactions differ in that HPPD hydroxylates at the ring C1 and HMS at the benzylic position. The HPPD reaction is more complex in that hydroxylation at C1 instigates a 1,2-shift of an aceto substituent. Despite that multiple intermediates have been observed to accumulate in single turnover reactions of both enzymes, neither enzyme exhibits significant accumulation of the hydroxylating intermediate. In this study we employ a product analysis method based on the extents of intermediate partitioning with HPP deuterium substitutions to measure the kinetic isotope effects for hydroxylation. These data suggest that, when forming the native product homogentisate, the wild-type form of HPPD produces a ring epoxide as the immediate product of hydroxylation but that the variant HPPDs tended to also show the intermediacy of a benzylic cation for this step. Similarly, the kinetic isotope effects for the other major product observed, quinolacetic acid, showed that either pathway is possible. HMS variants show small normal kinetic isotope effects that indicate displacement of the deuteron in the hydroxylation step. The relatively small magnitude of this value argues best for a hydrogen atom abstraction/rebound mechanism. These data are the first definitive evidence for the nature of the hydroxylation reactions of HPPD and HMS.  相似文献   

6.
Regioselectivity is used to determine the absolute energetic differences for four different reactions catalyzed by P450. Abstraction of a hydrogen from a benzylic carbon containing a chlorine has a 1.0 kcal/mol lower barrier than abstraction from a simple benzylic carbon, which in turn is 0.4 to 0.9 kcal/mol lower than abstraction from the methyl group of an aromatic ether and 0.1 to 0.6 kcal/mol easier than aromatic hydroxylation. Isotope effects are used to determine if the enzyme-substrate complexes leading to each product, from a given substrate, are in rapid equilibrium. For all enzymes isotopically sensitive branching is observed from the benzylic carbon upon deuterium incorporation at that position to each of the other positions, indicating that each product arises from the same active oxygen species. The energetic differences determined experimentally are accurately reproduced by theoretical hydrogen atom abstractions at both the AM1 semiempirical and DFT levels of theory.  相似文献   

7.
 Methane monooxygenase (MMO) catalyzes the oxidation of stable hydrocarbons that are not attacked by cytochrome P450 monooxygenase. A key transient intermediate in the catalytic cycle of the soluble form of MMO termed compound Q (Q) has been trapped and characterized through spectroscopic comparisons with novel high valent model complexes. Q appears to contain a non-heme dinuclear Fe(IV) cluster bridged by at least two single oxygen atoms to form a so-called diamond core. Q has the ability to react directly with unactivated hydrocarbons to yield oxidized products. Several types of experiments indicate that this reaction involves formation of an intermediate, probably with radical character. This is consistent with a hydrogen atom abstraction mechanism analogous to that ascribed to cytochrome P450. However, these same experiments show that a pure hydrogen atom abstraction mechanism is unlikely for many substrates without an additional interaction between the intermediate that is formed and the high valent cluster. The results may be of general relevance to monooxygenase catalysis. Received: 15 January 1998 / Accepted: 9 March 1998  相似文献   

8.
Y Jin  J D Lipscomb 《Biochemistry》1999,38(19):6178-6186
The soluble form of methane monooxygenase (MMO) isolated from methanotrophic bacteria catalyzes the O2-dependent conversion of methane to methanol, as well as the adventitious oxidation of many other hydrocarbons. In past studies, it was reported that the oxidation reaction of methylcubane, a radical clock substrate, catalyzed by MMO from Methylococcus capsulatus (Bath) gave only cubylmethanol as the product rather than methylcubanol(s) or rearranged products characteristic of a radical formed on the methyl group [Choi, S.-Y., Eaton, P. E., Hollenberg, P. F., Liu, K. E., Lippard, S. J., Newcomb, M., Putt, D. A., Upadhyaya, S. P., and Xiong, Y. (1996) J. Am. Chem. Soc. 118, 6547-6555]. Such a substrate radical intermediate would be expected if the mechanism of MMO involves hydrogen atom abstraction as indicated by many previous mechanistic studies. Here it is shown that the reaction of methylcubane with the reconstituted MMO system from Methylosinus trichosporium OB3b yields both cubylmethanol and methylcubanols, with methyl hydroxylation favored over cubyl hydroxylation. This unexpected regioselectivity indicates steric effects on the reaction in agreement with past product distribution studies. In addition, the apparent majority product of the reaction is tentatively assigned as one of the possible rearranged products for this radical probe, on the basis of gas chromatography and mass spectrometry data. This result suggests the formation of a radical intermediate in the reaction, thus supporting a radical-based mechanism for this form of MMO.  相似文献   

9.
A new concerted mechanism is proposed for the conversion of methane to methanol on intermediate Q of soluble methane monooxygenase (sMMO), the active site of which is considered to involve an Fe2(mu-O)2 diamond core. A hybrid density functional theory (DFT) method is used for our mechanistic study on the important reactivity of the bare FeO+ complex and a diiron model of intermediate Q. The reaction pathway for the methane hydroxylation on the diiron complex is essentially identical to that for the gas-phase reaction by the bare FeO+ complex. Methane is highly activated on the dinuclear iron model through the formation of a methane complex, in which a coordinatively unsaturated iron plays a central role in the bonding interaction between the diiron model and substrate methane. A H atom abstraction via a four-centered transition state and a recombination of the OH and CH3 groups via a three-centered transition state successively occur on the dinuclear iron-oxo species, leading to the formation of a methanol complex that corresponds to intermediate T. These electronic processes take place in a concerted manner. Our mechanism for methane hydroxylation by sMMO is different from the radical mechanism that has been widely accepted for enzymatic hydrocarbon hydroxylation, especially by cytochrome P450.  相似文献   

10.
Borowski T  Bassan A  Siegbahn PE 《Biochemistry》2004,43(38):12331-12342
Density functional calculations using the B3LYP functional has been used to study the reaction mechanism of 4-hydroxyphenylpyruvate dioxygenase. The first part of the catalytic reaction, dioxygen activation, is found to have the same mechanism as in alpha-ketoglutarate-dependent enzymes; the ternary enzyme-substrate-dioxygen complex is first decarboxylated to the iron(II)-peracid intermediate, followed by heterolytic cleavage of the O-O bond yielding an iron(IV)-oxo species. This highly reactive intermediate attacks the aromatic ring at the C1 position and forms a radical sigma complex, which can either form an arene oxide or undergo a C1-C2 side-chain migration. The arene oxide is found to have no catalytic relevance. The side-chain migration is a two-step process; the carbon-carbon bond cleavage first affords a biradical intermediate, followed by a decay of this species forming the new C-C bond. The ketone intermediate formed by a 1,2 shift of an acetic acid group rearomatizes either at the active site of the enzyme or in solution. The hypothetical oxidation of the aromatic ring at the C2 position was also studied to shed light on the 4-HPPD product specificity. In addition, the benzylic hydroxylation reaction, catalyzed by 4-hydroxymandelate synthase, was also studied. The results are in good agreement with the experimental findings.  相似文献   

11.
In order to examine the reactivity of active intermediate derived form iron porphyrins, competitive oxidations of alkane and alkene were carried out. It has been proposed that the first step of alkane hydroxylation is H atom abstraction and that of alkene is one-electron transfer. Therefore, it is expected that alkene-alkane competitive oxidation can be used as a probe for discrimination of differences in chemical properties among active species. Cytochrome P450 and SR complex, which is a stable thiolate-ligated iron porphyrin, mediated the oxidation of alkane much more preferentially than iron porphyrin coordinated by imidazole or chloride. These results indicate that thiolate coordination alters the reactivity of the two-electron-oxidized intermediate in a manner that is much more favorable to alkane hydroxylation than the case of chloride or imidazole coordination.  相似文献   

12.
Adenosylcobalamin (AdoCbl)-dependent rearrangements are a group of reactions with no obvious precedents in organic chemistry. In every case, they are characterized by a mechanism in which a hydrogen atom on one carbon atom exchanges places with a group X on an adjacent carbon: (formula; see text) Much experimental work indicates that an AdoCbl rearrangement is initiated by homolysis of the C-Co bond of the cofactor. The migrating hydrogen is then abstracted from the substrate by the resulting 5'-deoxyadenosyl radical, or by a second radical that is generated elsewhere at the active site, and, after the migration of group X, is returned to the product in a similar reaction. In at least some of the rearrangements, group X migration may occur via a cation radical intermediate that formed by the departure of X with its electrons, a process assisted by the unpaired electron left behind on the adjacent carbon after the abstraction of the migrating hydrogen. Once C-Co bond cleavage has initiated the reaction by producing a free radical at the active site, the corrin ring plays no further role in the rearrangements.  相似文献   

13.
It has been established that the horseradish peroxidase/O2/isobutyraldehyde (IBAL) system leads to triplet acetone and formic acid formation followed by phosphorescence of the triplet acetone (see, for example, Bechara, E.J.H., Faria Oliveira, O.M.M., Durán, N., Casadei de Baptista, R., and Cilento, G. (1979) Photochem. Photobiol. 30, 101-110). In this paper many of the mechanistic details are established. The reaction is initiated by the autoxidation of IBAL to form the peracid (CH3)2CHC = O(OOH). The peracid converts horseradish peroxidase into compound I which in turn is converted into compound II by abstracting the alcoholic hydrogen atom from the enol form of IBAL. This creates a free radical with two resonance forms. (Formula: see text) Addition of molecular oxygen to the latter resonance form creates a peroxy radical which abstracts a hydrogen atom near the active site of the enzyme. The newly formed alpha-peroxide in turn forms a dioxetane-type of intermediate which rapidly decomposes into triplet acetone and formic acid. Compound II reacts with the enol by the same pathway as compound I. Thus native horseradish peroxidase is regenerated. The hydrogen atom abstraction near the enzyme active site may occur directly from ethanol, present to solubilize IBAL or from a group on the enzyme, in which case ethanol participates in a repair mechanism. Phosphate buffer is necessary because it catalyzes the keto-enol conversion of IBAL. Thus horseradish peroxidase participates in a normal peroxidatic cycle. The only chain reaction is the uncatalyzed autoxidation of IBAL, most of which occurs prior to the mixing of IBAL with the oxygenated horseradish peroxidase solution.  相似文献   

14.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

15.
During porphyrin biosynthesis the oxygen-independent coproporphyrinogen III oxidase (HemN) catalyzes the oxidative decarboxylation of the propionate side chains of rings A and B of coproporphyrinogen III to form protoporphyrinogen IX. The enzyme utilizes a 5'-deoxyadenosyl radical to initiate the decarboxylation reaction, and it has been proposed that this occurs by stereo-specific abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chains leading to a substrate radical. Here we provide EPR-spectroscopic evidence for intermediacy of the latter radical by observation of an organic radical EPR signal in reduced HemN upon addition of S-adenosyl-L-methionine and the substrate coproporphyrinogen III. This signal (g(av) = 2.0029) shows a complex pattern of well resolved hyperfine splittings from at least five different hydrogen atoms. The radical was characterized using regiospecifically labeled (deuterium or 15N) coproporphyrinogen III molecules. They had been generated from a multienzyme mixture and served as efficient substrates. Reaction of HemN with coproporphyrinogen III, perdeuterated except for the methyl groups, led to the complete loss of resolved proton hyperfine splittings. Substrates in which the hydrogens at both alpha- and beta-positions, or only at the beta-positions of the propionate side chains, or those of the methylene bridges, were deuterated showed that there is coupling with hydrogens at the alpha-, beta-, and methylene bridge positions. Deuterium or 15N labeling of the pyrrole nitrogens without labeling the side chains only led to a slight sharpening of the radical signal. Together, these observations clearly identified the radical signal as substrate-derived and indicated that, upon abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chain by the 5'-deoxyadenosyl radical, a comparatively stable delocalized substrate radical intermediate is formed in the absence of electron acceptors. The observed hyperfine constants and g values show that this coproporphyrinogenyl radical is allylic and encompasses carbon atoms 3', 3, and 4.  相似文献   

16.
We have previously shown that superoxide radical anion (O2.-) reacts with hydroethidine (HE) to form a product that is distinctly different from ethidium (E+) (Zhao et al., Free Radic. Biol. Med. 34:1359; 2003). The structure of this product was recently determined as the 2-hydroxyethidium cation (2-OH-E+) (Zhao et al., Proc. Natl. Acad. Sci. USA 102:5727; 2005). In this study, using HPLC and mass spectrometry techniques, we show that 2-OH-E+ is formed from the reaction between HE and nitrosodisulfonate radical dianion (NDS) or Fremy's salt. The reaction kinetics and mechanism were determined using steady-state and time-resolved optical and EPR techniques. Within the first 50 ms, an intermediate was detected. Another intermediate absorbing strongly at 460 nm and weakly at 670 nm was detected within a second. The structure of this species was assigned to an imino quinone derivative of HE. The stoichiometry of the reaction indicates that two molecules of NDS were needed to oxidize a molecule of HE. We postulate that the first step of the reaction involves the hydrogen atom abstraction from HE to form an aminyl radical that reacts with another molecule of NDS to form an adduct that decomposes to an imino quinone derivative of HE. A similar mechanism has been proposed for the reaction between HE and O2.-. The reaction between HE and the Fremy's salt should provide a facile route for the synthesis of 2-OH-E+, a diagnostic marker product of the HE/O2.- reaction.  相似文献   

17.
S M Miller  J P Klinman 《Biochemistry》1985,24(9):2114-2127
The chemical mechanism of hydroxylation, catalyzed by dopamine beta-monooxygenase, has been explored with a combination of secondary kinetic isotope effects and structure-reactivity correlations. Measurement of primary and secondary isotope effects on Vmax/Km under conditions where the intrinsic primary hydrogen isotope effect is known allows calculation of the corresponding intrinsic secondary isotope effect. By this method we have obtained an alpha-deuterium isotope effect, Dk alpha = 1.19 +/- 0.06, with dopamine as substrate. The beta-deuterium isotope effect is indistinguishable from one. The large magnitude of Dk alpha, together with our previous determination of a near maximal primary deuterium isotope effect of 9.4-11, clearly indicates the occurrence of a stepwise process for C-H bond cleavage and C-O bond formation and hence the presence of a substrate-derived intermediate. To probe the nature of this intermediate, a structure-reactivity study was performed by using a series of para-substituted phenylethylamines. Deuterium isotope effects on Vmax and Vmax/Km parameters were determined for all of the substrates, allowing calculation of the rate constants for C-H bond cleavage and product dissociation and dissociation constants for amine and O2 loss from the enzyme-substrate ternary complex. Multiple regression analysis yielded an electronic effect of p = -1.5 for the C-H bond cleavage step, eliminating the possibility of a carbanion intermediate. A negative p value is consistent with formation of either a radical or a carbocation; however, a significantly better correlation is obtained with sigma p rather than sigma p+, implying formation of a radical intermediate via a polarized transition state. Additional effects determined from the regression analyses include steric effects on rate constants for substrate hydroxylation and product release and on KDamine, consistent with a sterically restricted binding site, and a positive electronic effect of p = 1.4 on product dissociation, ascribed to a loss of product from an enzyme-bound Cu(II)-alkoxide complex. These results lead us to propose a mechanism in which O-O homolysis [from a putative Cu(II)-OOH species] and C-H homolysis (from substrate) occur in a concerted fashion, circumventing the formation of a discrete, high energy oxygen species such as hydroxyl radical. The substrate and peroxide-derived radical intermediates thus formed undergo a recombination, kinetically limited by displacement of an intervening water molecule, to give the postulated Cu(II)-alkoxide product complex.  相似文献   

18.
Summary Adenosylcobalamin-dependent rearrangements are enzyme catalyzed reactions in which a hydrogen atom is transferred from one carbon atom to an adjacent one in exchange for a group X which migrates in the opposite direction. In the hydrogen transfer step, the mechanism of which is reasonably well understood, the cofactor serves as an intermediate hydrogen carrier. The transfer of hydrogen to the cofactor involves homolysis of the carbon-cobalt bond to generate cob(II)alamin and the 5-deoxyadenos-5-yl radical, followed by abstraction of a hydrogen atom from the substrate to form 5-deoxyadenosine and the substrate radical. After migration of group X, the hydrogen atom is returned to the product radical by the reverse of the above reactions to generate the final product and reconstitute the cofactor.In contrast to the transfer of hydrogen, the mechanism of group X migration is poorly understood. Many reactions mechanisms have been proposed on chemical grounds, but there is insufficient biochemical evidence to permit a choice among these proposals. A quantity of negative evidence has accumulated suggesting that group X migration does not involve alkylation of the cobalt of cobalamin by the substrate, but in the absence of firm data supporting an alternative mechanism, even this weak conclusion must be regarded as provisional.An invited article. Supported in part by grant AM-16589 from the National Institutes of Health.  相似文献   

19.
Oxygen activation occurs at a wide variety of enzyme active sites. Mechanisms previously proposed for the copper monooxygenase, dopamine beta-monooxygenase (DbetaM), involve the accumulation of an activated oxygen intermediate with the properties of a copper-peroxo or copper-oxo species before substrate activation. These are reminiscent of the mechanism of cytochrome P-450, where a heme iron stabilizes the activated O2 species. Herein, we report two experimental probes of the activated oxygen species in DbetaM. First, we have synthesized the substrate analog, beta,beta-difluorophenethylamine, and examined its capacity to induce reoxidation of the prereduced copper sites of DbetaM upon mixing with O2 under rapid freeze-quench conditions. This experiment fails to give rise to an EPR-detectable copper species, in contrast to a substrate with a C-H active bond. This indicates either that the reoxidation of the enzyme-bound copper sites in the presence of O2 is tightly linked to C-H activation or that a diamagnetic species Cu(II)-O2* has been formed. In the context of the open and fully solvent-accessible active site for the homologous peptidylglycine-alpha-hydroxylating monooxygenase and by analogy to cytochrome P-450, the accumulation of a reduced and activated oxygen species in DbetaM before C-H cleavage would be expected to give some uncoupling of oxygen and substrate consumption. We have, therefore, examined the degree to which O2 and substrate consumption are coupled in DbetaM using both end point and initial rate experimental protocols. With substrates that differ by more than three orders of magnitude in rate, we fail to detect any uncoupling of O2 uptake from product formation. We conclude that there is no accumulation of an activated form of O2 before C-H abstraction in the DbetaM and peptidylglycine-alpha-hydroxylating monooxygenase class of copper monooxygenases, presenting a mechanism in which a diamagnetic Cu(II)-superoxo complex, formed initially at very low levels, abstracts a hydrogen atom from substrate to generate Cu(II)-hydroperoxo and substrate-free radical as intermediates. Subsequent participation of the second copper site per subunit completes the reaction cycle, generating hydroxylated product and water.  相似文献   

20.
Experiments on cryptically chiral ethanes have indicated that the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) catalyzes the hydroxylation of ethane with total retention of configuration at the carbon center attacked. This result would seem to rule out a radical mechanism for the hydroxylation chemistry, at least as mediated by this enzyme. The interpretation of subsequent experiments on n-propane, n-butane, and n-pentane has been complicated by hydroxylation at both the pro-R and pro-S secondary C-H bonds, where the hydroxylation takes place. It has been suggested that these results merely reflect presentation of both the pro-R and pro-S C-H bonds to the hot "oxygen atom" species generated at the active site, and that the oxo-transfer chemistry, in fact, proceeds concertedly with retention of configuration. In the present work, we have augmented these earlier studies with experiments on [2,2-2H2]butane and designed d,l form chiral dideuteriobutanes. Essentially equal amounts of (2R)-[3,3-2H2]butan-2-ol and (2R)-[2-2H1]butan-2-ol are produced upon hydroxylation of [2,2-2H2]butane. The chemistry is stereospecific with full retention of configuration at the secondary carbon oxidized. In the case of the various chiral deuterated butanes, the extent of configurational inversion has been shown to be negligible for all the chiral butanes examined. Thus, the hydroxylation of butane takes place with full retention of configuration in butane as well as in the case of ethane. These results are interpreted in terms of an oxo-transfer mechanism based on side-on singlet oxene insertion across the C-H bond similar to that previously noted for singlet carbene insertion (Kirmse, W., and Ozkir, I. S. (1992) J. Am. Chem. Soc. 114, 7590-7591). Finally, we discuss how even the oxene insertion mechanism, with "spin crossover" in the transition state, could lead to small amounts of radical rearrangement products, if and when such products are observed. A scheme is described that unifies the two extreme mechanistic limits, namely the concerted oxene insertion and the hydrogen abstraction radical rebound mechanism within the same over-arching framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号