首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil extracellular traps (NETs) are extracellular chromatin structures that can trap and degrade microbes. They arise from neutrophils that have activated a cell death program called NET cell death, or NETosis. Activation of NETosis has been shown to involve NADPH oxidase activity, disintegration of the nuclear envelope and most granule membranes, decondensation of nuclear chromatin and formation of NETs. We report that in phorbol myristate acetate (PMA)-stimulated neutrophils, intracellular chromatin decondensation and NET formation follow autophagy and superoxide production, both of which are required to mediate PMA-induced NETosis and occur independently of each other. Neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase activity, still exhibit PMA-induced autophagy. Conversely, PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy. Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis. These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.  相似文献   

2.
Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in ‘beads-on-a-string’ conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of ‘beads-on-a-string’ DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both the antimicrobial and the cytotoxic effects of NETs.  相似文献   

3.
Neutrophil granulocytes are paramount to innate responses as major effectors of acute inflammation. Among the various strategies enacted by neutrophils to eliminate microbes NETosis is a novel distinct antimicrobial activity in which an interlacement of chromatin fibres rich in granule‐derived antimicrobial peptides and enzymes is extruded (NETs, neutrophils extracellular traps ). NETs contribute to the pathogenesis of acute and chronic inflammatory disorders. The interactions of mycoplasmas and innate immune cells, in particular neutrophil granulocytes, are poorly defined. Here, we describe NET formation in vivo in the mammary gland and milk of sheep naturally infected by Mycoplasma agalactiae. Also, we assess the contribution of liposoluble proteins, the most abundant component of the Mycoplasma membrane, in inducing NETosis. We demonstrate that Mycoplasma liposoluble proteins induce NET release at levels comparable to what observed with other stimuli, such as lipopolysaccharides and phorbol 12‐myristate 13‐acetate. Stimulation of neutrophils with synthetic diacylated lipopeptides based on the M. agalactiae P48, P80, and MAG_1000 proteins, combined in a mix or used individually, suggests that NETosis might not be dependent on a specific lipopeptide sequence. Also, NETosis is partially abolished when TLR2 is blocked with specific antibodies. The results presented in this work provide evidences for the mechanisms underlying NET activation in mycoplasma infections, and on their contribution to pathogenesis of mycoplasmosis.  相似文献   

4.
Neutrophil extracellular traps (NETs) are chromatin structures loaded with antimicrobial molecules. They can trap and kill various bacterial, fungal and protozoal pathogens, and their release is one of the first lines of defense against pathogens. In vivo, NETs are released during a form of pathogen-induced cell death, which was recently named NETosis. Ex vivo, both dead and viable neutrophils can be stimulated to release NETs composed of either nuclear or mitochondrial chromatin, respectively. In certain pathological conditions, NETs are associated with severe tissue damage or certain auto-immune diseases. This review describes the recent progress made in the identification of the mechanisms involved in NETosis and discusses its interplay with autophagy and apoptosis.  相似文献   

5.
Neutrophil extracellular chromatin traps (NETs) are a recently described mechanism of innate immune responses to bacteria and fungi. Evidence indicates that NETs are induced by inflammation, that they contribute to diverse disease pathologies, and that they associate with bactericidal substances. Genomic DNA is released in NETs, leading to a cell death that has been labeled NETosis. Although NETosis clearly differs from apoptosis, the classical form of cell death, recent experiments indicate a connection between NETosis and autophagy. The regulated deployment of NETs may require covalent modification of histones, the basic DNA-binding proteins that organize chromatin in the cell''s nucleus and within NETs. Histone modification by peptidylarginine deiminase 4 (PAD4) is necessary for NET release. The functions of additional histone modifications, however, remain to be tested.Less than a decade since their discovery, neutrophil extracellular traps (NETs) remain in the headlines. Initially, interest focused on the structure of extracellular NET chromatin and its capacity to capture and damage bacteria. Soon, however, researchers began to see the implications of extracellular chromatin for the development of autoimmune diseases. One quintessential autoimmune disease, systemic lupus erythematosus (SLE), is known to arise together with autoantibodies to DNA and chromatin, although the immediate trigger for the production of these autoantibodies is unclear. A connection between NETs and autoimmunity was made by discovering that histones, a set of proteins that act as a structural harness for DNA in chromatin, are modified by peptidylarginine deiminase 4 (PAD4), an enzyme that converts arginines to citrullines. Researchers had long suspected that autoantigen modifications could provide the initial stimuli in autoimmunity because subtle alterations in a protein''s primary sequence can break tolerance. PAD4 is implicated in the development of rheumatoid arthritis (RA) because the most reliable clinical test for RA uses the detection of anti-citrulline antibodies in the sera of patients.In a sophisticated set of experiments reported in the previous issue of Arthritis Research & Therapy, Liu and colleagues [1] accomplished an extensive inventory of post-translational modifications in NET histones. The researchers induced NETs from human neutrophils, as well as two cell lines that assume neutrophil-like characteristics, and used a panel of 40 commercially available antisera to identify histone modifications that arise in parallel with NETs. Stimuli that were used to elicit NET release also induced histone H3 and H4 citrullination in human neutrophils and the EPRO cell line. However, other modifications such as histone H4 lysine 20 methylation and H4 lysine 16 acetylation showed inconsistent results in neutrophils versus the EPRO cells. To survey histone modifications, Liu and colleagues [1] confronted technical difficulties in that histone amino terminal tails contain the highest concentration of histone modifications yet are also highly susceptible to proteases secreted by activated neutrophils [2,3]. The histone tails act as flexible tethers that organize chromatin into higher-order structures. Interestingly, purified NETs failed to induce an immune response in mice, although a subset of SLE sera reacted strongly with citrullinated histone H3 [1]. Therefore, mechanisms that regulate histone modification deserve further attention.Neeli and colleagues [4] were the first to identify citrullinated histone H3 in NETs, a discovery that was confirmed by others [5]. Neeli and colleagues [4] provided a second important insight, namely that PAD4-citrullinated histone H3 is a reliable marker of inflammation. Thus, it became clear that the release of NETs is not an ''accident'' caused by a barrage of proteases and reactive oxygen species unleashed from neutrophils. Instead, production of NETs requires enzymatic activity and input from neutrophil surface receptors and the cytoskeleton [6]. By analyzing PAD4-deficient mice, Li and colleagues [7] demonstrated that PAD4 is essential for the production of NETs in response to bacterial infections. The regulation of PAD4 activity thus moved to the forefront of the research on NETs.It is now clear that NET release takes advantage of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and the main granule proteases to trigger and construct the extended chromatin network [3,8]. In addition, myeloperoxidase is found in NETs after their release from the cells, and this enzyme and its products are the main components in NETs that kill bacteria [9]. In a notable study from the labs of Banchereau and Pascual [10], it was reported that SLE neutrophils are poised to undergo NETosis upon stimulation with anti-ribonucleo-protein autoantibodies and that NETs released by these neutrophils contain LL37 and HMGB-1, well-known stimulators of immune responses. In subsequent analyses using sera from patients with connective tissue disease, anti-citrullinated histone antibodies were observed in Felty''s syndrome, a rare disorder that shares serologic features with RA and SLE, whereas such autoantibodies were infrequent in SLE and RA [11]. These findings indicate that the process of NETosis is highly relevant to the development of human autoimmune responses, although a direct cause and effect may not connect the release of NETs to the production of autoantibodies.The detailed characterization of NET histone modifications, as accomplished by Liu and colleagues [1], invites speculations about the possible functions of these modifications. Several questions deserve further study: Will NET histone modifications, such as methylation, acetylation, and citrullination, be found to participate in gene regulation that sets the stage for NET release? Will the primary function of histone modifications turn out to be the decondensation of nuclear chromatin that is required for NETs expand to their optimal size and internal structure? Alternatively, NET histone modifications may serve non-traditional purposes. For example, certain modifications may anchor other NET components such as elastase, LL37, or myeloperoxidase to the chromatin meshwork. Unique modifications in NETs may attract phagocytes and stimulate them to ingest the trapped microorganisms. Other histone modifications may activate or dampen the inflammatory response by acting on innate pattern recognition receptors. The answers to these questions will, no doubt, keep research on NETs in leading immunology and microbiology journals for years to come.  相似文献   

6.
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed "NETosis." Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.  相似文献   

7.

Background

The release by neutrophils of DNA-based extracellular traps (NETs) is a recently recognized innate immune phenomenon that contributes significantly to control of bacterial pathogens at tissue foci of infection. NETs have also been implicated in the pathogenesis of non-infectious diseases such as small vessel vasculitis, lupus and cystic fibrosis lung disease. Reactive oxygen species (ROS) are important mediators of NET generation (NETosis). Neutrophils with reduced ROS production, such as those from patients with chronic granulomatous disease or myeloperoxidase (MPO) deficiency, produce fewer NETs in response to inflammatory stimuli. To better understand the roles of various ROS in NETosis, we explore the role of MPO, its substrates chloride ion (Cl) and hydrogen peroxide (H2O2), and its product hypochlorite (HOCl) in NETosis.

Findings

In human peripheral blood neutrophils, pharmacologic inhibition of MPO decreased NETosis. Absence of extracellular Cl, a substrate for MPO, also reduced NETosis. While exogenous addition of H2O2 and HOCl stimulated NETosis, only exogenous HOCl could rescue NETosis in the setting of MPO inhibition. Neither pharmacological inhibition nor genetic deletion of MPO in murine neutrophils blocked NETosis, in contrast to findings in human neutrophils.

Conclusions

Our results pinpoint HOCl as the key ROS involved in human NETosis. This finding has implications for understanding innate immune function in diseases in which Cl homeostasis is disturbed, such as cystic fibrosis. Our results also reveal an example of significant species-specific differences in NET phenotypes, and the need for caution in extrapolation to humans from studies of murine NETosis.  相似文献   

8.
《Trends in microbiology》2023,31(3):280-293
Neutrophil extracellular traps (NETs) evolved to protect the host against microbial infections and are formed by a web-like structure of DNA that is decorated with antimicrobial effectors. Due to their potent inflammatory functions, NETs also cause tissue damage and can favor and/or aggravate inflammatory diseases. This multipronged activity of NETs requires that the induction, release, and degradation of NETs are tightly regulated. Here we describe the key pathways that are intrinsic to neutrophils and regulate NETosis, and we review the most recent findings on how neutrophil extrinsic factors participate in the formation of NETs. In particular, we emphasize how bystander cells contribute to modifying the capacity of neutrophils to undergo NETosis. Finally, we discuss how these neutrophil extrinsic processes can be harnessed to protect the host against the excessive inflammation elicited by uncontrolled NET release.  相似文献   

9.
Gestational diabetes mellitus (GDM) is a metabolic syndrome occurring in pregnant women and increases the risk of placental dysplasia. Neutrophil extracellular traps (NETs) may play a critical role in placental dysplasia. NETosis (neutrophil cell death by NET release) depends on NADPH/ROS pathway. In view of the adiponectin which is widely believed to be reduced in GDM patients suppresses NADPH oxidase and ROS generation of neutrophil. We speculate that increased NET release is associated with hypoadiponectinemia. Trophoblast apoptosis is significantly increased in GDM patients, but it is not clear whether NETs promotes cell apoptosis. This study aims to reveal the mechanism of Neutrophil Extracellular Traps generation and their role in trophoblast apoptosis in Gestational Diabetes Mellitus. We investigated the generation of NETs by cell-free DNA (cf-DNA) quantification, live-cell imaging, and reactive oxygen species (ROS) measurement. ERK1/2 and p38 MAPK signalling pathway proteins were detected by western blotting. The Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and western blotting were performed to explore the effects of NETs on trophoblast apoptosis. We found that adiponectin inhibited NET release by suppressing ROS production, and p38 MAPK and ERK1/2 proteins were involved in the process. Further, NETs promoted trophoblast apoptosis by activating the ROS-dependent mitochondrial pathway, which is mediated by ERK1/2 signalling. The current study demonstrated that hypoadiponectinemia is the cause of NETs formation and NETs promoting trophoblast apoptosis.  相似文献   

10.
Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS).Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.  相似文献   

11.
Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration.  相似文献   

12.
Protein citrullination is a post-translational modification of arginine that controls a diverse array of cellular processes, including gene regulation, protein stability, and neutrophil extracellular trap (NET) formation. Histone citrullination promotes chromatin decondensation and NET formation, a pro-inflammatory form of cell death that is aberrantly increased in numerous immune disorders. This review will provide insights into NETosis and how this novel form of cell death contributes to inflammatory diseases, with a particular emphasis on its role in thrombosis. We will also discuss recent efforts to develop PAD-specific inhibitors.  相似文献   

13.
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.  相似文献   

14.

Background

Neutrophil extracellular traps (NETs), extracellular structures composed of decondensed chromatin and antimicrobial molecules, are released in a process called NETosis. NETs, which are part of normal host defense, have also been implicated in multiple human diseases. Unfortunately, methods for quantifying NETs have limitations which constrain the study of NETs in disease. Establishing optimal methods for NET quantification holds the potential to further elucidate the role of NETs in normal and pathologic processes.

Results

To better quantify NETs and NET-like structures, we created DNA Area and NETosis Analysis (DANA), a novel ImageJ/Java based program which provides a simple, semi-automated approach to quantify NET-like structures and DNA area. DANA can analyze many fluorescent microscope images at once and provides data on a per cell, per image, and per sample basis. Using fluorescent microscope images of Sytox-stained human neutrophils, DANA quantified a similar frequency of NET-like structures to the frequency determined by two different individuals counting by eye, and in a fraction of the time. As expected, DANA also detected increased DNA area and frequency of NET-like structures in neutrophils from subjects with rheumatoid arthritis as compared to control subjects. Using images of DAPI-stained murine neutrophils, DANA (installed by an individual with no programming background) gave similar frequencies of NET-like structures as the frequency of NETs determined by two individuals counting by eye. Further, DANA quantified more NETs in stimulated murine neutrophils compared to unstimulated, as expected.

Conclusions

DANA provides a means to quantify DNA decondensation and the frequency of NET-like structures using a variety of different fluorescent markers in a rapid, reliable, simple, high-throughput, and cost-effective manner making it optimal to assess NETosis in a variety of conditions.
  相似文献   

15.
Neutrophil granulocytes are the most abundant group of leukocytes in the peripheral blood. As professional phagocytes, they engulf bacteria and kill them intracellularly when their antimicrobial granules fuse with the phagosome. We found that neutrophils have an additional way of killing microorganisms: upon activation, they release granule proteins and chromatin that together form extracellular fibers that bind pathogens. These novel structures, or Neutrophil Extracellular Traps (NETs), degrade virulence factors and kill bacteria1, fungi2 and parasites3. The structural backbone of NETs is DNA, and they are quickly degraded in the presence of DNases. Thus, bacteria expressing DNases are more virulent4. Using correlative microscopy combining TEM, SEM, immunofluorescence and live cell imaging techniques, we could show that upon stimulation, the nuclei of neutrophils lose their shape and the eu- and heterochromatin homogenize. Later, the nuclear envelope and the granule membranes disintegrate allowing the mixing of NET components. Finally, the NETs are released as the cell membrane breaks. This cell death program (NETosis) is distinct from apoptosis and necrosis and depends on the generation of Reactive Oxygen Species by NADPH oxidase5. Neutrophil extracellular traps are abundant at sites of acute inflammation. NETs appear to be a form of innate immune response that bind microorganisms, prevent them from spreading, and ensure a high local concentration of antimicrobial agents to degrade virulence factors and kill pathogens thus allowing neutrophils to fulfill their antimicrobial function even beyond their life span. There is increasing evidence, however, that NETs are also involved in diseases that range from auto-immune syndromes to infertility6.We describe methods to isolate Neutrophil Granulocytes from peripheral human blood7 and stimulate them to form NETs. Also we include protocols to visualize the NETs in light and electron microscopy.  相似文献   

16.
中性粒细胞胞外诱捕网(NETs)是新发现的中性粒细胞抗病原机制,是天然免疫系统的重要组成部分。但病原体在进化中形成了针对NETs的免疫逃逸机制。不同的病原体逃逸NET的机制不同,本文主要介绍3种机制:降解NETs-DNA、表面分子机制和NETosis调控。  相似文献   

17.
Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.  相似文献   

18.
Neutrophil interaction with activated endothelial cells (EC) is required for transmigration. We examined consequences of this interaction on NETosis. Co-culture of activated EC with neutrophils induced neutrophil extracellular trap (NET) formation, which was partially dependent on production of IL-8 by activated EC. Extended neutophil/EC co-culture resulted in EC damage, which could be abrogated by inclusion of either diphenyleneiodonium to inhibit the NAPDH oxidase pathway required for NETosis, or DNAse to disrupt NETs. These findings offer new insight into mechanisms whereby NETs trigger damage to the endothelium in sepsis, small vessel vasculitis and possibly the villous trophoblast in preeclampsia.  相似文献   

19.
Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation.  相似文献   

20.
Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is a surface molecule exclusively expressed on phagocytes. We recently identified SIRL-1 as a negative regulator of human neutrophil function. Here, we determine whether ligation of SIRL-1 prevents the pathogenic release of NETs in SLE. Peripheral blood neutrophils from SLE patients with mild to moderate disease activity and healthy donors were freshly isolated. NET release was assessed spontaneously or after exposure to anti-neutrophil antibodies or plasma obtained from SLE patients. The formation of NETs was determined by microscopic evaluation using DNA dyes and immunostaining of NET components, as well as by live cell imaging. We show that SLE neutrophils spontaneously release NETs. NET formation is enhanced by stimulation with antibodies against LL37. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and MEK-ERK signaling prevents NET release in response to these antibodies. Signaling via the inhibitory receptor SIRL-1 was induced by ligation with anti-SIRL-1 specific antibodies. Both spontaneous and anti-neutrophil antibody-induced NET formation is suppressed by engagement of SIRL-1. Furthermore, NET release by healthy neutrophils exposed to SLE plasma is inhibited by SIRL-1 ligation. Thus, SIRL-1 engagement can dampen spontaneous and anti-neutrophil antibody-induced NET formation in SLE, likely by suppressing NAPDH oxidase and MEK-ERK activity. Together, these findings reveal a regulatory role for SIRL-1 in NET formation, potentially providing a novel therapeutic target to break the pathogenic loop in SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号