首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms.  相似文献   

2.
Bardet-Biedl syndrome (BBS) is a rare hereditary autosomal recessive disease associated with several features including obesity, hypertension, and renal abnormalities. The underlying mechanisms of renal defects associated with BBS remain poorly defined. We examined the histological, molecular, and functional renal changes in BBS mouse models that have features of the human disorder. Interestingly, obese hypertensive Bbs4(-/-) mice exhibited inflammatory infiltration and renal cysts, whereas the obese normotensive Bbs2(-/-) mice had only minor inflammatory infiltration. Accordingly, the expression level of inducible nitric oxide synthase was elevated in the kidney of both BBS mice with a more marked increase in Bbs4(-/-) mice. In contrast, endothelial nitric oxide synthase expression was decreased in Bbs4(-/-), but not Bbs2(-/-), mice. Similarly, the expression levels of transient receptor potential vanilloid 1 and 4 channels as well as β- and γ-subunits of epithelial Na channel were significantly reduced only in the kidney of Bbs4(-/-) mice. Metabolic studies revealed changes in urine output and urinary concentrations of creatinine, blood urea nitrogen, sodium, and potassium with a more pronounced effect in Bbs4(-/-) mice. Finally, we found that calorie restriction which prevented obesity in BBS mice reversed the morphological and molecular changes found in Bbs2(-/-) and Bbs4(-/-) mice, indicating the kidney abnormalities associated with BBS are obesity related. These findings extend our understanding of the function of BBS proteins and emphasize the importance of these proteins in renal physiology.  相似文献   

3.
It now appears that, in most obese patients, obesity is associated with a low-grade inflammation of white adipose tissue (WAT) resulting from chronic activation of the innate immune system and which can subsequently lead to insulin resistance, impaired glucose tolerance and even diabetes. WAT is the physiological site of energy storage as lipids. In addition, it has been more recently recognized as an active participant in numerous physiological and pathophysiological processes. In obesity, WAT is characterized by an increased production and secretion of a wide range of inflammatory molecules including TNF-alpha and interleukin-6 (IL-6), which may have local effects on WAT physiology but also systemic effects on other organs. Recent data indicate that obese WAT is infiltrated by macrophages, which may be a major source of locally-produced pro-inflammatory cytokines. Interestingly, weight loss is associated with a reduction in the macrophage infiltration of WAT and an improvement of the inflammatory profile of gene expression. Several factors derived not only from adipocytes but also from infiltrated macrophages probably contribute to the pathogenesis of insulin resistance. Most of them are overproduced during obesity, including leptin, TNF-alpha, IL-6 and resistin. Conversely, expression and plasma levels of adiponectin, an insulin-sensitising effector, are down-regulated during obesity. Leptin could modulate TNF-alpha production and macrophage activation. TNF-alpha is overproduced in adipose tissue of several rodent models of obesity and has an important role in the pathogenesis of insulin resistance in these species. However, its actual involvement in glucose metabolism disorders in humans remains controversial. IL-6 production by human adipose tissue increases during obesity. It may induce hepatic CRP synthesis and may promote the onset of cardiovascular complications. Both TNF-alpha and IL-6 can alter insulin sensitivity by triggering different key steps in the insulin signalling pathway. In rodents, resistin can induce insulin resistance, while its implication in the control of insulin sensitivity is still a matter of debate in humans. Adiponectin is highly expressed in WAT, and circulating adiponectin levels are decreased in subjects with obesity-related insulin resistance, type 2 diabetes and coronary heart disease. Adiponectin inhibits liver neoglucogenesis and promotes fatty acid oxidation in skeletal muscle. In addition, adiponectin counteracts the pro-inflammatory effects of TNF-alpha on the arterial wall and probably protects against the development of arteriosclerosis. In obesity, the pro-inflammatory effects of cytokines through intracellular signalling pathways involve the NF-kappaB and JNK systems. Genetic or pharmacological manipulations of these effectors of the inflammatory response have been shown to modulate insulin sensitivity in different animal models. In humans, it has been suggested that the improved glucose tolerance observed in the presence of thiazolidinediones or statins is likely related to their anti-inflammatory properties. Thus, it can be considered that obesity corresponds to a sub-clinical inflammatory condition that promotes the production of pro-inflammatory factors involved in the pathogenesis of insulin resistance.  相似文献   

4.
Feng B  Jiao P  Nie Y  Kim T  Jun D  van Rooijen N  Yang Z  Xu H 《PloS one》2011,6(9):e24358

Background

Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO) mice.

Methodology/Principal Findings

Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (ip) injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation.

Conclusions/Significance

Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin levels.  相似文献   

5.
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.  相似文献   

6.
Central obesity is associated with low-grade inflammation that promotes type 2 diabetes and cardiovascular disease in obese individuals. The 12- and 5-lipoxygenase (12-LO and 5-LO) enzymes have been linked to inflammatory changes, leading to the development of atherosclerosis. 12-LO has also been linked recently to inflammation and insulin resistance in adipocytes. We analyzed the expression of LO and proinflammatory cytokines in adipose tissue and adipocytes in obese Zucker rats, a widely studied genetic model of obesity, insulin resistance, and the metabolic syndrome. mRNA expression of 12-LO, 5-LO, and 5-LO-activating protein (FLAP) was upregulated in adipocytes and adipose tissue from obese Zucker rats compared with those from lean rats. Concomitant with increased LO gene expression, the 12-LO product 12-HETE and the 5-LO products 5-HETE and leukotriene B4 (LTB4) were also increased in adipocytes. Furthermore, upregulation of key proinflammatory markers interleukin (IL)-6, TNFα, and monocyte chemoattractant protein-1 were observed in adipocytes isolated from obese Zucker rats. Immunohistochemistry indicated that the positive 12-LO staining in adipose tissue represents cells in addition to adipocytes. This was confirmed by Western blotting in stromal vascular fractions. These changes were in part reversed by the novel anti-inflammatory drug lisofylline (LSF). LSF also reduced p-STAT4 in visceral adipose tissue from obese Zucker rats and improved the metabolic profile, reducing fasting plasma glucose and increasing insulin sensitivity in obese Zucker rats. In 3T3-L1 adipocytes, LSF abrogated the inflammatory response induced by LO products. Thus, therapeutic agents reducing LO or STAT4 activation may provide novel tools to reduce obesity-induced inflammation.  相似文献   

7.
Adiponectin--its role in metabolism and beyond.   总被引:21,自引:0,他引:21  
Adiponectin is a recently identified adipose tissue-derived protein (adipocytokine) with important metabolic effects. It is exclusively expressed in adipose tissue and released into the circulation. Adiponectin expression and/or secretion is increased by insulin like growth factor-1 and ionomycin, and decreased by tumor necrosis factor-alpha, glucocorticoids, beta-adrenergic agonists and cAMP. Data for insulin are somewhat inconclusive. Moreover, adiponectin expression and secretion are increased by activators of peroxisome proliferator-activated receptor (PPAR)-gamma. Besides inhibiting inflammatory pathways, recombinant adiponectin increases insulin sensitivity and improves glucose tolerance in various animal models. This insulin-sensitizing effect appears to be mostly attributable to enhanced suppression of glucose production, but beneficial effects on muscle cannot be excluded. In humans, plasma adiponectin concentrations exceed those of any other hormone by a thousand times; they decrease with obesity and are positively associated with whole-body insulin sensitivity. Therefore, low adiponectin may contribute to the decrease in whole-body insulin sensitivity that accompanies obesity. Furthermore, there is increasing evidence that genetic variants in the adiponectin gene itself and/or in genes encoding adiponectin-regulatory proteins--such as PPAR-gamma--may be associated with hypoadiponectinemia, insulin resistance and type 2 diabetes. This suggests that adiponectin may reflect PPAR-gamma activity in vivo. Finally, reversal or alleviation of hypoadiponectinemia may represent a target for development of drugs improving insulin sensitivity and glucose tolerance.  相似文献   

8.
Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values. In WAT, lipogenesis after feeding was highest 2-4 weeks after GTG injection, and in liver, lipid synthesis in fed obese mice was greatest at 7-12 weeks after the induction of obesity. The post-prandial insulin concentration was increased after 2 weeks of obesity, and serum glucose concentration was higher in fed obese mice after 4 weeks. These results indicate that increased lipogenesis in GTG-injected mice may be due to an increase in insulin concentration after feeding and that insulin resistance (assessed by lipogenic response to insulin release) is apparent in BAT before WAT and liver.  相似文献   

9.
Li Y  Tong X  Rumala C  Clemons K  Wang S 《PloS one》2011,6(10):e26656

Background

Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.

Methodology/Principal Findings

Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.

Conclusion

TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity.  相似文献   

10.
11.
Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose output was significantly increased. Indomethacin had no effect on adipose tissue mass, glucose tolerance, or GSIS when included in a regular diet. Indomethacin administration to obese mice did not reduce adipose tissue mass, and the compensatory increase in GSIS observed in obese mice was not affected by treatment with indomethacin. We demonstrate that indomethacin did not inhibit GSIS per se, but activation of GPR40 in the presence of indomethacin inhibited glucose-dependent insulin secretion in MIN6 cells. We conclude that constitutive high hepatic glucose output combined with impaired GSIS in response to activation of GPR40-dependent signaling in the HF/HS+INDO-fed mice contributed to the impaired glucose clearance during a glucose challenge and that the resulting lower levels of plasma insulin prevented the obesogenic action of the HF/HS diet.  相似文献   

12.
Adipose tissue inflammation and dysfunction are associated with obesity‐related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug‐inducible “suicide” genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra‐abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity‐related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity‐related metabolic dysfunction and its complications.  相似文献   

13.
The anti-obesity and anti-diabetic actions of BRL 26830A, beta 3-adrenoceptor agonist, (2 mg/kg administered intramuscularly daily for 2 weeks) were evaluated in obese diabetic Yellow KK mice and C57B1 control mice. The following parameters were compared in the treated vs. control animals: brown adipose tissue (BAT) thermogenesis, resting metabolic rate (RMR), insulin receptors in adipocytes, and blood glucose and serum insulin levels during a glucose overloading test. BRL 26830A significantly increased BAT thermogenesis and RMR but it decreased the amount of white adipose tissue without affecting food intake. Those actions contributed to the mitigation of obesity in Yellow KK mice. BRL 26830A also increased the concentration of insulin receptors and decreased the levels of serum insulin and blood glucose during the glucose overloading test in Yellow KK mice. In the glucose overloading test performed one hour after BRL 26830A injection, insulin secretion was significantly increased and the blood glucose level was markedly decreased in both groups. These observations suggest that BRL 26830A possesses anti-obesity and anti-diabetic actions and consequently may be useful for treating obesity as well as non-insulin-dependent diabetes mellitus with obesity.  相似文献   

14.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

15.
Natural killer T (NKT) cells are important therapeutic targets in various disease models and are under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type 1 NKT cells, whose abundance decreases with increased adiposity and insulin resistance. Although loss-of-function of NKT cells had no effect on glucose tolerance in animals with prolonged high fat diet feeding, activation of NKT cells by lipid agonist α-galactosylceramide enhances alternative macrophage polarization in adipose tissue and improves glucose homeostasis in animals at different stages of obesity. Furthermore, the effect of NKT cells is largely mediated by the IL-4/STAT6 signaling axis in obese adipose tissue. Thus, our data identify a novel therapeutic target for the treatment of obesity-associated inflammation and type 2 diabetes.  相似文献   

16.
Adipose tissue expresses tumor necrosis factor (TNF) and interleukin (IL)-6, which may cause obesity-related insulin resistance. We measured TNF and IL-6 expression in the adipose tissue of 50 lean and obese subjects without diabetes. Insulin sensitivity (S(I)) was determined by an intravenous glucose tolerance test with minimal-model analysis. When lean [body mass index (BMI) <25 kg/m(2)] and obese (BMI 30-40 kg/m(2)) subjects were compared, there was a 7.5-fold increase in TNF secretion (P < 0.05) from adipose tissue, and the TNF secretion was inversely related to S(I) (r = -0.42, P < 0.02). IL-6 was abundantly expressed by adipose tissue. In contrast to TNF, plasma (rather than adipose) IL-6 demonstrated the strongest relationship with obesity and insulin resistance. Plasma IL-6 was significantly higher in obese subjects and demonstrated a highly significant inverse relationship with S(I) (r = -0.71, P < 0.001). To separate the effects of BMI from S(I), subjects who were discordant for S(I) were matched for BMI, age, and gender. By use of this approach, subjects with low S(I) demonstrated a 3.0-fold increased level of TNF secretion from adipose tissue and a 2.3-fold higher plasma IL-6 level (P < 0.05) compared with matched subjects with a high S(I). Plasma IL-6 was significantly associated with plasma nonesterified fatty acid levels (r = 0.49, P < 0.002). Thus the local expression of TNF and plasma IL-6 are higher in subjects with obesity-related insulin resistance.  相似文献   

17.
Bardet-Biedl syndrome (BBS) is a rare oligogenic disorder exhibiting both clinical and genetic heterogeneity. Although the BBS phenotype is variable both between and within families, the syndrome is characterized by the hallmarks of developmental and learning difficulties, post-axial polydactylia, obesity, hypogenitalism, renal abnormalities, retinal dystrophy, and several less frequently observed features. Eleven genes mutated in BBS patients have been identified, and more are expected to exist, since about 20–30% of all families cannot be explained by the known loci. To investigate the etiopathogenesis of BBS, we created a mouse null for one of the murine homologues, Bbs4, to assess the contribution of one gene to the pleiotropic murine Bbs phenotype. Bbs4 null mice, although initially runted compared to their littermates, ultimately become obese in a gender-dependent manner, females earlier and with more severity than males. Blood chemistry tests indicated abnormal lipid profiles, signs of liver dysfunction, and elevated insulin and leptin levels reminiscent of metabolic syndrome. As in patients with BBS, we found age-dependent retinal dystrophy. Behavioral assessment revealed that mutant mice displayed more anxiety-related responses and reduced social dominance. We noted the rare occurrence of birth defects, including neural tube defects and hydrometrocolpos, in the null mice. Evaluations of these null mice have uncovered phenotypic features with age-dependent penetrance and variable expressivity, partially recapitulating the human BBS phenotype.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.  相似文献   

19.
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.  相似文献   

20.

Aims

Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.

Methods

A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.

Results

Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt’s index of insulin sensitivity, and 100 unit higher Stumvoll’s index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004) and ~0.18mmol/l higher 2-hr glucose (p≤0.001).

Conclusion

Visceral and subcutaneous adipose tissue assessed by ultrasonography are significantly associated with glucose metabolism, even after adjustment for other measures of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号