首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The regulation of xanthine dehydrogenase activity by reductors-antioxidants (ascorbic acid, glutatione-SH, gentathione dithiothreitol, cysteine and hydrocortisone) and caffeine was investigated in the purified enzymatic preparation in vitro. It was shown, that reductors-antioxidants were incompetitor inhibitors of xanthine dehydrogenase and caffeine was a competitor-inhibitor of it. The mechanisms of inhibition of xanthine dehydrogenase activity by these agents were discussed.  相似文献   

2.
The effect of different reductors-antioxidants (ascorbic acid, cysteine, glutathione-SH and hydroquinone) on purified rat uterine aromatase activity was studied. It was established that all these compounds were aromatase activators. The possible mechanisms of this activation were discussed.  相似文献   

3.
Murexide underwent reduction by rat liver cytosolic fraction or a hypoxanthine-xanthine oxidase system to produce a free radical metabolite. Reduction of murexide by the freshly prepared cytosolic fraction depended upon the presence of ascorbic acid. N1-Methylnicotinamide, xanthine or hypoxanthine, in that order, could also serve as a source of reducing equivalents for the production of that free radical by the cytosolic fraction. Several thiol compounds (GSH, cysteine, and cysteamine), pyridine nucleotides (NADH, NADPH) and ascorbic acid were also effective in generating the murexide-derived free radical. Tetramethyl murexide was also reduced to its free radical derivative by a hypoxanthine-xanthine oxidase system.  相似文献   

4.
The effects of specific xanthine oxidase induction and inhibition on glutathione antioxidant system activity, lipid peroxidation, cytochrome P-450 quantity and corticosteroids concentration in the rat liver were studied. It was dependence established that there was a straight between xanthine oxidase activity and the activity of glutathione antioxidant system, lipid peroxidation and the ascorbic acid formation. The reciprocal dependence was established between xanthine oxidase activity and the concentrations of cytochrome P-450 and corticosteroids.  相似文献   

5.
Exposure of U937 cells to low micromolar levels of ascorbic acid or dehydroascorbic acid, while resulting in identical ascorbic acid accumulation, is unexpectedly associated with remarkably different responses to exogenous oxidants. We observed that otherwise nontoxic levels of hydrogen peroxide, tert-butylhydroperoxide or peroxynitrite promote toxicity in cells preloaded with ascorbic acid, whereas hardly any effect was detected in cells pretreated with dehydroascorbic acid. Further experiments performed with peroxynitrite in cells preloaded with ascorbic acid provided evidence for a very rapid nonapoptotic death, preceded by early Bax mitochondrial translocation and by mitochondrial permeability transition. The notion that conversion of extracellular ascorbic acid to dehydroascorbic acid prevents the enhancing effects on oxidant toxicity and nevertheless preserves the net amount of vitamin C accumulated was also established using ascorbate oxidase as well as various sources of superoxide, namely, xanthine/xanthine oxidase or ATP-driven NADPH oxidase activation. These findings suggest that superoxide-dependent conversion of extracellular ascorbic acid to dehydroascorbic acid represents an important component of the overall survival strategy of some cell types to reactive oxygen/nitrogen species.  相似文献   

6.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

7.
The components of the active molybdenum cofactor in xanthine oxidase was found. The molybdenum cofactor is responsible for the enzymatic activity of the methyl viologen-nitrate reduction. The inactivation of the methyl viologen-nitrate reductase by cyanide is accompanied by the extraction of sulfur from the enzyme. Cyanide inactivated enzyme can be reactivated by incubation with Na2S. The results suggest that the active site of the methyl viologen-nitrate reductase contains an atom of active sulfur which does not originate from the acid labile sulfur of the Fe/S cluster, neither originate from the organic sulfur of the cysteine residue, nor from the sulfur of persulfide. It is probably another type of inorganic sulfur near the molybdenum atoms, The flavin-free xanthine oxidase may be loss entirely its oxidation activity of xanthine to uric acid. In contrast, the activity of the methyl viologen-nitrate reductase is nearly completly insensitive to the flavinfree treatment. Studies on the Fe-free xanthine oxidase, obtained by metal-binding agent phenanthroline and by acid treatment, revealed Fe (in xanthine oxidase it is the Fe of the Fe/S cluster) is also one of the active conponents, functioning in the methyl viologen-nitrate reductase, besides molybdenum.  相似文献   

8.
The peroxidative oxidation of extracted rat liver microsomal lipid, assayed as malondialdehyde production, can be promoted by milk xanthine oxidase in the presence of 0.2 mM FeCl3 and 0.1 mM EDTA. The reaction is inhibited by the superoxide dismutase activity of erythrocuprein. The reaction is also inhibited by 1,3-diphenylisobenzofuran, which reacts with singlet oxygen to yield dibenzoylbenzene. During inhibition of the lipid peroxidation reaction by 1,3-diphenylisobenzofuran, o-dibenzoylbenzene was produced. The rate of superoxide production by xanthine oxidase was not affected by 1,3-diphenylisobenzofuran. Lipid peroxidation promoted by ascorbic acid is not inhibited by either erythrocuprein or 1,3-diphenylisobenzofuran. Therefore it is suggested that the peroxidative oxidation of unsaturated lipid promoted by xanthine oxidase involves the formation of singlet oxygen from superoxide, and the singlet oxygen reacts with the lipid to form fatty acid hydroperoxides.  相似文献   

9.
Rat heart ornithine decarboxylate activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase has a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2- on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect upon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rats to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

10.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

11.
The combined effects of ethanol and hypoxia on the conversion of xanthine dehydrogenase (D form) to xanthine oxidase (O form) and on the leakage of the enzyme from isolated rat hepatocytes was studied. Time-dependent death of cells occurred during incubation in hypoxic conditions. Ethanol (40 mM) had only a moderate effect on viability in aerobiosis, but accelerated the loss of hypoxic cells, which was 96% after 3 h of incubation. In hypoxic conditions, the xanthine oxidase was gradually converted from D into O form. The conversion was complete in 3 h, and was accelerated by 1 mM xanthine or by ethanol, in a concentration-related manner. Hypoxia brought about a progressive leakage of xanthine oxidase from hepatocytes, which was accelerated by ethanol in a concentration-dependent manner. The enzyme found outside hepatocytes was mostly in its O form. The xanthine oxidase of hepatocytes cytosol was converted from D into O form by human plasma or serum. In all cases the conversion could be completely reverted by treatment of the extract with dithiothreitol.  相似文献   

12.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

13.
Reductic acid (2,3-dihydroxy-2-cyclopentenone, 1) decreased the ESR signal of 5,5-dimethyl-1-pyrroline 1-oxide (DMPO)-OH produced by hydroxyl radical and DMPO. 1 also inhibited lipid peroxidation initiated by cytochrome P450 and tert-butyl hydroperoxide. 1 inhibited xanthine oxidase activity, while ascorbic acid and 2-hydroxytetronic acid, an ascorbic acid analogue without side chain, did not.  相似文献   

14.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

15.
The effects of all-zinc metallothionein (Zn-metallothionein) and predominantly cadmium metallothionein (Cd/Zn-metallothionein) on free radical lipid peroxidation have been investigated, using erythrocyte ghosts as the test system. When treated with xanthine and xanthine oxidase, Zn-metallothionein and Cd/Zn-metallothionein underwent thiolate group oxidation and metal ion release that was catalase-inhibitable, but superoxide dismutase-non-inhibitable. Similar treatment in the presence of ghosts and added Fe(III) resulted in metallothioneen oxidation that was significantly inhibited by superoxide dismutase. Ghosts incubated with xanthine/xanthine oxidase/Fe(III) underwent H2O2- and O2-dependent lipid peroxidation, as measured by thiobarbituric acid reactivity. Neither type of metallothionein had any effect on xanthine oxidase activity, but both strongly inhibited lipid peroxidation when added to the membranes concurrently with xanthine/xanthine oxidase/iron. This inhibition was far greater and more sustained than that caused by dithiothreitol at a concentration equivalent to that of metallothionein thiolate. Significant protection was also afforded when ghosts plus Cd/Zn-metallothionein or Zn/metallothionein were preincubated with H2O2 and Fe(III), and then subjected to vigorous peroxidation by the addition of xanthine and xanthine oxidase. These results could be mimicked by using Cd(II) or Zn(II) alone. Previous studies suggested that Zn(II) inhibits xanthine/xanthine oxidase/iron-driven lipid peroxidation in ghosts by interfering with iron binding and redox cycling. Therefore, the primary determinant of metallothionein proteciion appears to be metal release and subsequent uptake by the membranes. These results have important implications concerning the antioxidant role of metallothionein, a protein known to be induced by various prooxidant conditions.  相似文献   

16.
1. The presence of an ascorbic acid-dependent NADH oxidation in ocular tissues has been established. Subcellular fractionation revealed that the enzyme is localized in the microsomes. The distribution of the enzyme in some ocular tissues has been determined; microsomes from the ciliary processes and the retina have comparable activities, which are much higher than those from the cornea or lens. 2. NADPH cannot replace NADH, and cysteine, reduced glutathione, ergothioneine and dehydroascorbic acid cannot be substituted for ascorbic acid in the reaction. The rate of NADH oxidation was greatly increased in the presence of cucumber ascorbate oxidase, and the enzyme appears to be NADH–monodehydroascorbate transhydrogenase. 3. Cytochrome b5 is present in retinal microsomes. 4. The enzyme is inhibited by p-chloromercuribenzoate and iodoacetate, but not by cyanide, Amytal or malonate. 5. High concentrations of chloroquine cause a partial inhibition of the reaction, probably owing to interaction of this compound with the enzyme thiol groups. Low concentrations of Diamox, comparable with those attained in tissues during therapy with this drug, bring about partial inhibition of the reaction. Eserine, cortisone, hydrocortisone, 11-deoxycorticosterone and dexamethasone have no effect on the rate of oxidation. 6. The possible role of ascorbic acid and NADH–monodehydroascorbate transhydrogenase in the formation of aqueous humour and secretory mechanisms is discussed.  相似文献   

17.
The corneas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with non-pathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)-generating oxidases (xanthine oxidase, D-amino acid oxidase and alpha-hydroxy acid oxidase) were examined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped corneal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and alpha-hydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in all corneal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidase/xanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.  相似文献   

18.
A new spectrophotometric assay method of xanthine oxidase applicable to the crude tissue homogenate containing uricase was presented in this paper. By adding potassium 2,4-dihydroxy-6-carboxy-1,3,5-triazine (potassium oxonate) (0.1 mm) to the crude xanthine oxidase reaction system, uric acid was stoichiometrically formed from xanthine and detectable allantoin was not formed and the formation of uric acid was not influenced by uricase.Distribution of xanthine oxidase in various rat tissues was measured by this method, and it was shown that the activity was high in the liver, the small intestine, and the spleen. Uricase was shown to distribute mainly in the liver of rats.  相似文献   

19.
Research was carried out to experimentally evaluate the antioxidant capacity of several red and white wines using a superoxide dismutase (SOD) biosensor recently developed by the present authors. Measurements were performed by comparing the biosensor response to increasing concentration of the superoxide radical produced in solution by the xanthine/xanthine oxidase system, both in the presence and absence of the test sample.The results were compared with those of two traditional spectrophotometric methods and of a spectrofluorimetric method described in literature.Lastly, also the polyphenol, sulfite and ascorbic acid contents of the different wine samples examined were measured using a tyrosinase biosensor, a sulfite oxidase biosensor and an ascorbate oxidase biosensor, respectively.  相似文献   

20.
BACKGROUND/AIMS: Homovanillamine is a biogenic amine that it is catalyzed to homovanillyl aldehyde by monoamine oxidase A and B, but the oxidation of its aldehyde to the acid derivative is usually ascribed to aldehyde dehydrogenase and a potential contribution of aldehyde oxidase and xanthine oxidase is usually ignored. METHODS: The present investigation examines the metabolism of homovanillamine to its acid derivative by concurrent incubation with monoamine oxidase and aldehyde oxidase. In addition, the metabolism of homovanillamine in freshly prepared and cryopreserved liver slices is examined and the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activity by using specific inhibitors of each oxidizing enzyme is compared. RESULTS: Homovanillamine was rapidly converted mainly to homovanillic acid when incubated with both momoamine oxidase and aldehyde oxidase. Homovanillic acid was also the main metabolite in the incubations of homovanillamine with freshly prepared or cryopreserved liver slices, via the intermediate homovanillyl aldehyde. The acid formation was 70-75 % inhibited by disulfiram (specific inhibitor of aldehyde dehydrogenase), whereas isovanillin (specific inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent (50-55 %) and allopurinol (specific inhibitor of xanthine oxidase) had almost no effect. CONCLUSIONS: Homovanillamine is rapidly oxidized to its acid, via homovanillyl aldehyde, by aldehyde dehydrogenase and aldehyde oxidase with little or no contribution from xanthine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号