首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed.  相似文献   

7.
Cyclic GMP-dependent protein kinase (PKG) is a key mediator of the nitric oxide/cGMP signaling pathway and plays a central role in regulating cardiovascular and neuronal functions. The N-terminal ∼50 amino acids of the kinase are required for homodimerization and association with isoform-specific PKG-anchoring proteins (GKAPs), which target the kinase to specific substrates. To understand the molecular details of PKG dimerization and gain insight into its association with GKAPs, we solved a crystal structure of the PKG Iβ dimerization/docking domain. Our structure provides molecular details of this unique leucine/isoleucine zipper, revealing specific hydrophobic and ionic interactions that mediate dimerization and demonstrating the topology of the GKAP interaction surface.  相似文献   

8.
9.
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation.  相似文献   

10.
Mutations in Bruton's tyrosine kinase (Btk) result in X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. While targeted disruption of the protein kinase C-beta (PKCbeta) gene in mice results in an immunodeficiency similar to xid, the overall tyrosine phosphorylation of Btk is significantly enhanced in PKCbeta-deficient B cells. We provide direct evidence that PKCbeta acts as a feedback loop inhibitor of Btk activation. Inhibition of PKCbeta results in a dramatic increase in B-cell receptor (BCR)-mediated Ca2+ signaling. We identified a highly conserved PKCbeta serine phosphorylation site in a short linker within the Tec homology domain of Btk. Mutation of this phosphorylation site led to enhanced tyrosine phosphorylation and membrane association of Btk, and augmented BCR and FcepsilonRI-mediated signaling in B and mast cells, respectively. These findings provide a novel mechanism whereby reversible translocation of Btk/Tec kinases regulates the threshold for immunoreceptor signaling and thereby modulates lymphocyte activation.  相似文献   

11.
12.
Src homology 3 domain-containing proline-rich kinase (SPRK)/mixed lineage kinase-3 is a serine/threonine kinase that has been identified as an upstream activator of the c-Jun NH(2)-terminal kinase (JNK) pathway. SPRK is capable of activating MKK4 by phosphorylation of serine and threonine residues, and mutant forms of MKK4 that lack the phosphorylation sites Ser(254) and Thr(258) block SPRK-induced JNK activation. A region of 63 amino acids following the kinase domain of SPRK is predicted to form a leucine zipper. The leucine zipper domain of SPRK has been shown to be necessary and sufficient for SPRK oligomerization, but its role in regulating activation of SPRK and downstream signaling remains unclear. In this study, we substituted a proposed stabilizing leucine residue in the zipper domain with a helix-disrupting proline to abrogate zipper-mediated SPRK oligomerization. We demonstrate that constitutively activated Cdc42 fully activates this monomeric SPRK mutant in terms of both autophosphorylation and histone phosphorylation activity and induces the same in vivo phosphorylation pattern as wild type SPRK. However, this catalytically active SPRK zipper mutant is unable to activate JNK. Our data show that the monomeric SPRK mutant fails to phosphorylate one of the two activating phosphorylation sites, Thr(258), of MKK4. These studies suggest that zipper-mediated SPRK oligomerization is not required for SPRK activation by Cdc42 but instead is critical for proper interaction and phosphorylation of a downstream target, MKK4.  相似文献   

13.
14.
15.
Bruton's tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.  相似文献   

16.
Receptor tyrosine kinases of the discoidin domain family, DDR1 and DDR2, are activated by different types of collagen and play important roles in cell adhesion, migration, proliferation, and matrix remodeling. In a previous study, we found that collagen binding by the discoidin domain receptors (DDRs) requires dimerization of their extracellular domains (Leitinger, B. (2003) J. Biol. Chem. 278, 16761-16769), indicating that the paradigm of ligand-induced receptor dimerization may not apply to the DDRs. Using chemical cross-linking and co-immunoprecipitation of differently tagged DDRs, we now show that the DDRs form ligand-independent dimers in the biosynthetic pathway and on the cell surface. We further show that both the extracellular and the cytoplasmic domains are individually dispensable for DDR1 dimerization. The DDR1 transmembrane domain contains two putative dimerization motifs, a leucine zipper and a GXXXG motif. Mutations disrupting the leucine zipper strongly impaired collagen-induced transmembrane signaling, although the mutant DDR1 proteins were still able to dimerize, whereas mutation of the GXXXG motif had no effect. A bacterial reporter assay (named TOXCAT) showed that the DDR1 transmembrane domain has a strong potential for self-association in a biological membrane and that this interaction occurs via the leucine zipper and not the GXXXG motif. Our results demonstrate that the DDRs exist as stable dimers in the absence of ligand and that receptor activation requires specific interactions made by the transmembrane leucine zipper.  相似文献   

17.
18.
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号