首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细菌还原氧化态硒产生红色单质硒的研究进展   总被引:3,自引:0,他引:3  
硒是一种生命必需的微量元素,但高浓度时毒性较强且会造成环境污染。许多细菌可以将亚硒酸盐(SeO32-)或硒酸盐(SeO42-)等毒性较高的氧化态硒还原为毒性较小的红色单质硒(Se°),形成硒-蛋白复合物,它们对于获得最佳补硒方式和治理硒环境污染具有应用潜力。近年来,关于这一生物还原过程,人们进行了大量的研究,包括碳源、氧气、元素硫、谷胱甘肽以及一些氧化还原酶和膜转运蛋白等在内的多种物质都被发现可能影响或参与了细菌对硒的代谢。综述了细菌进行生物还原氧化态硒的影响因素及不同细菌产生红色单质硒机理的研究进展。  相似文献   

2.
Cultures of a purple nonsulfur bacterium, Rhodobacter sphaeroides, amended with ~1 or ~100 ppm selenate or selenite, were grown phototrophically to stationary phase. Analyses of culture headspace, separated cells, and filtered culture supernatant were carried out using gas chromatography, X-ray absorption spectroscopy, and inductively coupled plasma spectroscopy-mass spectrometry, respectively. While selenium-amended cultures showed much higher amounts of SeO32− bioconversion than did analogous selenate experiments (94% uptake for SeO32− as compared to 9.6% for SeO42−-amended cultures from 100-ppm solutions), the chemical forms of selenium in the microbial cells were not very different except at exposure to high concentrations of selenite. Volatilization accounted for only a very small portion of the accumulated selenium; most was present in organic forms and the red elemental form.  相似文献   

3.
We investigated the effect of selenium form and dose on the total glutathione and non-protein -SH group contents in the edible spinach (Spinacia oleracea L.) and ground tomato (Lycopersicon esculentum Mill.) plants. Our experiments were carried out in a hydroponic culture. Selenium was added to the culture medium in its selenite (Na2SeO3 x 5H2O) and selenate (Na2SeO4) forms. Regardless of the selenium form, we observed an increase in the non-protein thiol content. The non-protein -SH group content depended on the form and dose of selenium as well as on the organ and plant species. Regardless of the selenium form, a higher content of non-protein -SH groups were found in the spinach biomass than in the tomato biomass. Selenite contributed to a larger accumulation of non-protein -SH groups in the roots, whereas selenate contributed to their accumulation in the shoots  相似文献   

4.
A facultative bacterium capable of removing the selenium (Se) oxyanions selenate (SeO(inf4)(sup2-)) and selenite (SeO(inf3)(sup2-)) from solution culture in flasks open to the atmosphere was isolated and studied with the goal of assessing its potential for use in bioremediation of seleniferous agricultural drainage water. Elemental Se (Se(sup0)) was confirmed as a product of the reaction. The organism, identified as Enterobacter cloacae and designated strain SLD1a-1 (ATCC 700258), removed from 61.5 to 94.5% of added SeO(inf4)(sup2-) (the primary species present in agricultural drainage water) at concentrations from 13 to 1,266 (mu)M. Equimolar amounts of nitrate (NO(inf3)(sup-)), which interferes with SeO(inf4)(sup2-) reduction in some organisms, did not influence the reaction in growth experiments but had a slight inhibitory effect in a washed-cell suspension. Washed-cell suspension experiments also showed that (i) SeO(inf3)(sup2-) is a transitory intermediate in reduction of SeO(inf4)(sup2-), being produced and rapidly reduced concomitantly; (ii) NO(inf3)(sup-) is also reduced concomitantly and at a much higher rate than SeO(inf4)(sup2-); and (iii) although enzymatic, reduction of either oxyanion does not appear to be an inducible process. Transmission electron microscopy revealed that precipitate particles are <0.1 (mu)m in diameter, and these particles were observed free in the medium. Evidence indicates that SLD1a-1 uses SeO(inf4)(sup2-) as an alternate electron acceptor and that the reaction occurs via a membrane-associated reductase(s) followed by rapid expulsion of the Se particles.  相似文献   

5.
还原亚硒酸盐产生红色单质硒光合细菌菌株的筛选与鉴定   总被引:4,自引:0,他引:4  
从实验室保藏的光合细菌中筛选出一株对亚硒酸钠还原效率较高的菌株S3,其亚硒酸钠还原产物通过透射电子显微镜及EDX(Electron-Dispersive X-ray)分析确定为红色单质硒。菌株S3的形态学特征、生理生化特征及光合色素扫描结果与固氮红细菌(Rhodobacter azotoformans)的特征基本一致;16S rDNA序列(GenBank登录号为DQ402051)在系统发育树中与固氮红细菌同属一个类群,序列同源性为99%。根据上述结果将菌株S3鉴定为固氮红细菌。初步研究了该菌株还原亚硒酸钠的特性,首次报道固氮红细菌具有还原亚硒酸盐产生红色单质硒的能力,为今后利用微生物方法治理环境中硒污染、利用微生物方法获得活性红色单质硒以及对微生物还原亚硒酸盐产生红色单质硒的机理研究奠定了良好的基础。  相似文献   

6.
A Gram-negative bacterium, identified as Stenotrophomonas maltophilia by fatty acid analysis and 16S rRNA sequencing, was isolated from a seleniferous agricultural evaporation pond sediment collected in the Tulare Lake Drainage District, California. In cultures exposed to the atmosphere, the organism reduces selenate (SeO4(2-)) and selenite (SeO3(2-)) to red amorphous elemental selenium (Se degrees ) only upon reaching stationary phase, when O2 levels are less than 0.1 mg l(-1). In 48 h, S. maltophilia removed 81.2% and 99.8% of added SeO4(2-) and SeO3(2-) (initial concentration of 0.5 mM), respectively, from solution. Anaerobic growth experiments revealed that the organism was incapable of using SeO4(2-), SeO3(2-), SO4(2-) or NO3- as a terminal electron acceptor. Transmission electron microscopy of cultures spiked with either Se oxyanion were found to contain spherical extracellular deposits. Analysis of the deposits by energy-dispersive X-ray spectroscopy revealed that they consist of Se. Furthermore, S. maltophilia was active in producing volatile alkylselenides when in the presence of SeO4(2-) and SeO3(2-). The volatile products were positively identified as dimethyl selenide (DMSe), dimethyl selenenyl sulphide (DMSeS) and dimethyl diselenide (DMDSe) by gas chromatography-mass spectrometry. Our findings suggest that this bacterium may contribute to the biogeochemical cycling of Se in seleniferous evaporation pond sediments and waters. This organism may also be potentially useful in a bioremediation scheme designed to treat seleniferous agricultural wastewater.  相似文献   

7.
Rhodobacter sphaeroides 2.4.1 exposed to selenate or selenite produced volatile selenium compounds. Total amounts of dimethyl selenide, dimethyl diselenide, dimethyl sulfide and dimethyl disulfide in culture medium and headspace were determined. The highest selenate volatilization occurred in the late stationary phase of growth. However, cultures deprived of light in the stationary phase of growth produced much less of the volatile organo-selenium compounds. Lower culture pHs increased the rate of selenium volatilization. Low sulfate concentration limited biomass production and selenium volatilization; high sulfate concentrations had an enhancing effect on the release of organo-selenium compounds. Cultures of R. sphaeroides reacted very differently to amendments with increasing amounts of selenate and selenite. Only small amounts of selenite were volatilized; meanwhile high amounts of methylated selenides were found in selenate-poisoned cultures. Received 03 February 1997/ Accepted in revised form 16 May 1997  相似文献   

8.
The mutagenicities of selenate (SeO2/4-) and selenite (SeO2/3-) were determined by two bacterial assay systems: Kada's rec-assay and Ames's Salmonella test. In both assays, these compounds were found to be weak mutagens. In the Salmonella test, selenate (0.05 revertants/nmole) and selenite (0.2 revertants/nmole) gave rise to base-pair substitution.  相似文献   

9.
10.
Amino acid transfer nucleic acids (tRNAs) that contain selenium-modified bases are synthesized by Escherichia coli in the presence of low levels (0.1-0.5 microM) of [75Se]selenite or [75Se]selenate. The amount of selenium incorporated (1-2 g atoms/100 mol of tRNA) was unchanged by 10-20-fold variations in selenium or sulfate concentrations or by the addition of 1 mM cysteine, sulfide, or sulfite. Specific incorporation of selenium (as opposed to nonspecific substitution for sulfur) was further indicated by the different reversed phase chromatographic elution patterns of 35S- and 75Se-labeled tRNAs isolated from cells labeled with 35SO2-4 and 75SeO2-4. Also, E. coli mutants unable to synthesize an abundant sulfur-modified base, 4-thiouracil, nevertheless produced normal levels of selenium-modified tRNAs. Two different methods of distinguishing between aminoacylated and nonaminoacylated tRNA, one which examined mobility during reversed phase chromatography and another which employed anti-AMP antibodies, indicated that over 50% of the selenium-containing tRNA had lysine or glutamate acceptor activity.  相似文献   

11.
Accumulation of selenium in a model freshwater microbial food web.   总被引:2,自引:0,他引:2       下载免费PDF全文
The transfer of selenium between bacteria and the ciliated protozoan, Paramecium putrinum, was examined in laboratory cultures. The population growth of the ciliate was not inhibited in the presence of the highest concentrations of dissolved selenite or selenate tested (10(3) micrograms liter-1). Experiments with radioactive 75selenite or 75selenate indicated that accumulation of selenium by ciliates through time was low when feeding and metabolism were reduced by incubating at 0 degrees C. However, selenium accumulated in ciliate biomass during incubation with dissolved 75Se and bacteria at 24 degrees C and also when bacteria prelabeled with 75Se were offered as food in the absence of dissolved selenium. When 75Se-labeled bacterial food was diluted by the addition of nonradioactive bacteria, the amount of selenite and selenate in ciliates decreased over time, indicating depuration by the ciliates. In longer-term (> 5-day) fed-batch incubations with 75selenite-labeled bacteria, the selenium concentration in ciliates equilibrated at approximately 1.4 micrograms of Se g (dry weight)-1. The selenium content of ciliates was similar to that of their bacterial food on a dry-weight basis. These data indicate that selenium uptake by this ciliate occurred primarily during feeding and that biomagnification of selenium did not occur in this simple food chain.  相似文献   

12.
Enterobacter cloacae SLD1a-1 is capable of reductive detoxification of selenate to elemental selenium under aerobic growth conditions. The initial reductive step is the two-electron reduction of selenate to selenite and is catalyzed by a molybdenum-dependent enzyme demonstrated previously to be located in the cytoplasmic membrane, with its active site facing the periplasmic compartment (C. A. Watts, H. Ridley, K. L. Condie, J. T. Leaver, D. J. Richardson, and C. S. Butler, FEMS Microbiol. Lett. 228:273-279, 2003). This study describes the purification of two distinct membrane-bound enzymes that reduce either nitrate or selenate oxyanions. The nitrate reductase is typical of the NAR-type family, with alpha and beta subunits of 140 kDa and 58 kDa, respectively. It is expressed predominantly under anaerobic conditions in the presence of nitrate, and while it readily reduces chlorate, it displays no selenate reductase activity in vitro. The selenate reductase is expressed under aerobic conditions and expressed poorly during anaerobic growth on nitrate. The enzyme is a heterotrimeric (alphabetagamma) complex with an apparent molecular mass of approximately 600 kDa. The individual subunit sizes are approximately 100 kDa (alpha), approximately 55 kDa (beta), and approximately 36 kDa (gamma), with a predicted overall subunit composition of alpha3beta3gamma3. The selenate reductase contains molybdenum, heme, and nonheme iron as prosthetic constituents. Electronic absorption spectroscopy reveals the presence of a b-type cytochrome in the active complex. The apparent Km for selenate was determined to be approximately 2 mM, with an observed Vmax of 500 nmol SeO4(2-) min(-1) mg(-1) (kcat, approximately 5.0 s(-1)). The enzyme also displays activity towards chlorate and bromate but has no nitrate reductase activity. These studies report the first purification and characterization of a membrane-bound selenate reductase.  相似文献   

13.
A bacterium that reduces the soluble selenium oxyanions, selenate and selenite, to insoluble elemental red selenium (Se0) was isolated from a laboratory reactor developed to remove selenate from groundwater. Gene sequence alignment of the 16S rRNA allowed identification of the isolate as Azospira oryzae. Biochemical and morphologic characterization confirm the identification. The isolate reduces selenate and selenite to Se0 under microaerophilic and denitrifying conditions but not under aerobic conditions. It does not use selenate or selenite as terminal eˉ donors. Se oxyanion reduction causes the formation of Se nanospheres that are 0.25 ± 0.04 μm in diameter. Nanospheres may be associated with the cells or free in the medium. The enzymatic activity associated with the reduction of selenate has a molecular mass of approximately 500 kD, and the enzymatic activity associated with the reduction of selenite has a mass of approximately 55 kD. Selenite reduction was inhibited by tungsten. The molecular masses of these activities were different from those associated with the reduction of dimethylsulfoxide, sulfate, and nitrite. This bacterium, or perhaps its enzymes or DNA, might be useful for the remediation of waters contaminated with Se oxyanions.  相似文献   

14.
Summary Desulfovibrio desulfuricans (DSM 1924) can be adapted to grow in the presence of 10 mM selenate or 0.1 mM selenite. This growth occurred in media containing formate as the electron donor and either fumarate or sulfate as the electron acceptor. As determined by electron microscopy with energy-dispersive X-ray analysis, selenate and selenite were reduced to elemental selenium which accumulated inside the cells. Selenium granules resulting from selenite metabolism were cytoplasmic while granules of selenium resulting from selenate reduction appeared to be in the periplasmic region. The accumulation of red elemental selenium in the media following stationary phase resulted from cell lysis with the liberation of selenium granules. Growth did not occur with either selenate or selenite as the electron acceptor and13C nuclear magnetic resonance indicated that neither selenium oxyanion interfered with fumarate respiration. At 1 M selenate and 100 M selenite, reduction byD. desulfuricans was 95% and 97%, respectively. The high level of total selenate and selenite reduced indicated the suitability ofD. desulfuricans for selenium detoxification.  相似文献   

15.
A model continuous flow bioreactor (volume 0.5 L) was constructed for removing toxic soluble selenium (selenate/selenite) of high concentrations using a selenate-reducing bacterium, Bacillus sp. SF-1, which transforms selenate into elemental selenium via selenite for anaerobic respiration. Model wastewater contained 41.8 mg-Se/L selenate and excess lactate as the carbon and energy source; the bioreactor was operated as an anoxic, completely mixed chemostat with cell retention time between 2.2-95.2 h. At short cell retention times selenate was removed by the bioreactor, but accumulation of selenite was observed. At long cell retention times soluble selenium, both selenate and selenite, was successfully reduced into nontoxic elemental selenium. A simple mathematical model is proposed to evaluate Se reduction ability of strain SF-1. First-order kinetic constants for selenate and selenite reduction were estimated to be 2.9 x 10(-11) L/cells/h and 5.5 x 10(-13) L/cells/h, respectively. The yield of the bacterial cells by selenate reduction was estimated to be 2.2 x 10(9) cells/mg-Se.  相似文献   

16.
A bacterial isolate (strain JS-2) characterized as Bacillus sp. was challenged with high concentrations of toxic selenite ions. The microbe was found to transform the toxic, soluble, colorless selenite (SeO(3)(2-)) oxyions to nontoxic, insoluble, red elemental selenium (Se(0)). This process of biotransformation was accompanied by cytoplasmic and surface accumulation of electron dense selenium (Se(0)) granules, as revealed in electron micrographs. The cells grown in the presence of selenite oxyions secreted large quantities of extracellular polymeric substances (EPS). There were quantitative and qualitative differences in the cell wall fatty acids of the culture grown in the presence of selenite ions. The relative percentage of total saturated fatty acid and cyclic fatty acid increased significantly, whereas the amount of total unsaturated fatty acids decreased when the cells were exposed to selenite stress. All these physiological adaptive responses evidently indicate a potentially important role of cell wall fatty acids and extracellular polymeric substances in determining bacterial adaptation towards selenite-induced toxicity, which thereby explains the remarkable competitiveness and ability of this microbe to survive the environmental stress.  相似文献   

17.
This study compares Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to the selenium and tellurium oxyanions selenite (SeO3(2-)), tellurate (TeO4(2-)), and tellurite (TeO3(2-)). P. aeruginosa planktonic and biofilm cultures reduced the selenium and tellurium oxyanions to orange and black end-products (respectively) and were equally tolerant to killing by these metalloid compounds. S. aureus planktonic cell cultures processed these metalloid oxyanions in a similar way, but the corresponding biofilm cultures did not. S. aureus biofilms were approximately two and five times more susceptible to killing by tellurate and tellurite (respectively) than the corresponding planktonic cultures. Our data indicate that the means of reducing metalloid oxyanions may differ between the physiology displayed in biofilm and planktonic cultures of the same bacterial strain.  相似文献   

18.
The antimutagenic effect of selenium as sodium selenite, sodium selenate, selenium dioxide, and seleno-methionine was studied in the AmesSalmonella/microsome mutagenicity test using 7,12-dimethylbenz(a)anthracene (DMBA) and some of its metabolites. Selenium (20 ppm) as sodium selenite reduced the number of histidine revertants on plates containing up to 100 μg DMBA/plate. Increasing concentrations of selenium as sodium selenite, sodium selenate, and selenium dioxide up to 40 ppm Se progressively decreased the number of revertants caused by 50 μg DMBA. DMBA and its metabolites 7-hydroxymethyl-12-methylbenz(a)anthracene, 12-hydroxymethyl-7-methylbenz(a)anthracene, and 3-hydroxy-7,12-dimethylbenz(a)anthracene were mutagenic forSalmonella typhimurium TA100 in the presence of an S-9 mixture. Selenium supplementation as Na2SeO3 reduced the number of revertants induced by these metabolites to background levels. The antimutagenic effect of inorganic selenium compounds cannot be explained by toxicity of selenium as determined by viability tests withSalmonella typhimurium TA100. Selenium supplementation in all forms examined, except sodium selenate, decreased the rate of spontaneous reversion. Selenium as sodium selenate was slightly mutagenic at concentrations of 4 ppm or less. Higher concentration of Na2SeO4 inhibited the mutagenicity of DMBA. The present studies support the anticarcinogenic potential of selenium and indicate that form and concentration are important factors in this trace element's efficacy.  相似文献   

19.
The objective of the present study was to investigate the effects of oral selenate application in comparison to selenium deficiency and selenite treatment on the development of the diabetic status (glucose tolerance, insulin resistance and activities of glycolytic and gluconeogenic marker enzymes) in dbdb mice, representing a type II diabetic animal model. Therefore 21 adult male dbdb mice were assigned to 3 experimental groups of 7 animals each and put on a selenium deficient diet (< 0.03 mg/kg diet) based on torula yeast. Group 0Se was kept on selenium deficiency for 10 weeks while the mice of the groups SeIV and SeVI were supplemented daily with 15% of their individual LD(50) of sodium selenite or sodium selenate in addition to the diet. After 10 weeks a distinct melioration of the diabetic status indicated by a corrected glucose tolerance and a lowered insulin resistance was measured in selenate treated mice (group SeVI) in comparison to their selenium deficient and selenite treated companions and to their initial status. Activities of the glycolytic marker enzymes hexokinase, phosphofructokinase and pyruvate kinase were increased 1.7 to 3-fold in liver and/or adipose tissue by selenate treatment as compared to mice on selenium deficiency and mice with selenite administration. In contrast selenate treatment (SeVI) repressed the activity of liver pyruvate carboxylase the first enzyme in gluconeogenesis by about 33% in comparison to the selenium deficient (0Se) and selenite treated mice (SeIV). However the current study revealed an insulinomimetic role for selenate (selenium VI) also in type II diabetic animals due to a melioration of insulin resistance. In contrast selenium deficiency and especially selenite (selenium IV) impaired the diabetic status of dbdb mice, demonstrating the need for investigations on the insulinomimetic action of selenium due to the metabolism of different selenium compounds.  相似文献   

20.
Callus cultures were obtained from five selenium accumulator and three nonaccumulator species of Astragalus. Their morphological characteristics and their growth responses to light, sucrose, kinetin, and 2,4-dichlorophenoxyacetic acid are described. Calluses derived from accumulator species characteristically retained their tolerance to high concentrations of selenate and selenite, whereas calluses derived from nonaccumulator species were markedly inhibited by these two forms of selenium. Competition between sulfate and selenate was demonstrated. The two types of calluses could not be distinguished on the basis of 75Se-labeled selenate or selenite uptake. Neutron activation analysis failed to show differences in selenium content between the two types of calluses grown on media to which no selenium had been added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号