首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cytochromes of the c type in the gram-positive bacterium Bacillus subtilis are all membrane anchored, with their heme domains exposed on the outer side of the cytoplasmic membrane. They are distinguished from other cytochromes by having heme covalently attached by two thioether bonds. The cysteinyls in the heme-binding site (CXXCH) in apocytochrome c must be reduced in order for the covalent attachment of the heme to occur. It has been proposed that CcdA, a membrane protein, transfers reducing equivalents from thioredoxin in the cytoplasm to proteins on the outer side of the cytoplasmic membrane. Strains deficient in the CcdA protein are defective in cytochrome c and spore synthesis. We have discovered that mutations in the bdbC and bdbD genes can suppress the defects caused by lack of CcdA. BdbC and BdbD are thiol-disulfide oxidoreductases. Our experimental findings indicate that these B. subtilis proteins functionally correspond to the well-characterized Escherichia coli DsbB and DsbA proteins, which catalyze the formation of disulfide bonds in proteins in the periplasmic space.  相似文献   

5.
6.
7.
B K Chelm  C Beard  E P Geiduschek 《Biochemistry》1981,20(23):6564-6569
The Bacillus subtilis RNA polymerase sigma subunit and the phage SPO1-coded gene 28 protein are responsible for selective binding of RNA polymerase to early and middle SPO1 promoters, respectively. The association of the RNA polymerase core with each of these subunits weakens during the elongation of RNA chains. Similar changes are known to be an essential part of the Escherichia coli RNA polymerase sigma cycle.  相似文献   

8.
9.
10.
11.
12.
We isolated the gene encoding the alpha subunit of Bacillus subtilis RNA polymerase from a lambda gt11 expression vector library by using anti-alpha antibody as a probe. Four unique clones were isolated, one carrying a lacZ-alpha gene fusion and three carrying the entire alpha coding region together with additional sequences upstream. The identity of the cloned alpha gene was confirmed by the size and immunological reactivity of its product expressed in Escherichia coli. Further, a partial DNA sequence found the predicted NH2 terminus of alpha homologous with E. coli alpha. By plasmid integration and PBS1 transduction, we mapped alpha near rpsE and within the major ribosomal protein gene cluster on the B. subtilis chromosome. Additional DNA sequencing identified rpsM (encoding S13) and rpsK (encoding S11) upstream of alpha, followed by a 180-base-pair intercistronic region that may contain two alpha promoters. Although the organization of the alpha region resembles that of the alpha operon of E. coli, the putative promoters and absence of rpsD (encoding S4) immediately preceding the B. subtilis alpha gene suggest a different regulation.  相似文献   

13.
14.
15.
16.
Chen H  Tang H  Ebright RH 《Molecular cell》2003,11(6):1621-1633
We show that the Escherichia coli RNA polymerase (RNAP) alpha subunit C-terminal domain (alphaCTD) functionally interacts with sigma(70) at a subset of UP-element- and activator-dependent promoters, we define the determinants of alphaCTD and sigma(70) required for the interaction, and we present a structural model for the interaction. The alphaCTD-sigma(70) interaction spans the upstream promoter and core promoter, thereby linking recognition of UP-elements and activators in the upstream promoter with recognition of the -35 element in the core promoter. We propose that the alphaCTD-sigma(70) interaction permits UP-elements and activators not only to "recruit" RNAP through direct interaction with alphaCTD, but also to "remodel" RNAP-core-promoter interaction through indirect, alphaCTD-bridged interactions with sigma(70).  相似文献   

17.
Highly conserved amino acid residues in region 2 of the RNA polymerase sigma subunit are known to participate in promoter recognition and opening. We demonstrated that nonconserved residues in this region collectively determine lineage-specific differences in the temperature of promoter opening.  相似文献   

18.
The Bacillus subtilis RNA polymerase sigma 43 subunit and the phage SP82 encoded 28-kDa peptide are responsible for the binding of RNA polymerase to early and middle SP82 promoters, respectively. The delta peptide enhances the specificity of the interaction of B. subtilis RNA polymerase with these promoters. We have used sedimentation experiments to determine the effect of each of the three specificity factors, delta, sigma, and the 28-kDa peptide, on the binding of the other two factors to RNA polymerase core and the effect of NaCl on these binding equilibria. We show that sigma 43 and the 28-kDa peptide can each bind to RNA polymerase core at the same time as delta. Sigma 43 and the 28-kDa peptide have similar affinities to core at 0.1 M NaCl, but the 28-kDa peptide binds to core-delta more strongly than sigma 43. The implications of these findings with respect to the replacement of sigma 43 by the 28-kDa peptide and the mechanism of promoter search by B. subtilis RNA polymerase are discussed.  相似文献   

19.
Complexes between Bacillus subtilus RNA polymerase and 32P-labeled DNA were irradiated with UV light and digested with nuclease; electrophoresis and autoradiography were used to identify the polymerase subunits cross-linked to DNA. These experiments showed: 1) that cross-linkage of promoter complexes yielded predominantly the beta and sigma subunits; 2) that beta, beta', and sigma were detected in non-promoter complexes; 3) that addition of the delta subunit or high concentrations of NaCl decreased cross-linkage of all subunits, especially the cross-linkage of the sigma subunit in non-promoter complexes and the binding of polymerase at DNA ends; 4) that different patterns of cross-linkage were obtained at 0 degrees C (conditions favoring the formation of closed complexes) and 37 degrees C (conditions favoring the formation of open complexes); and 5) predominantly beta and possibly alpha were cross-linked by irradiation of core-DNA complexes whereas similar experiments with core-delta complexed to DNA showed the efficient cross-linkage of beta' and beta.  相似文献   

20.
Spores of Bacillus subtilis require the GerAA, GerAB, and GerAC receptor proteins for L-alanine-induced germination. Mutations in gerAA, both random and site directed, result in phenotypes that identify amino acid residues important for receptor function in broad terms. They highlight the functional importance of two regions in the central, integral membrane domain of GerAA. A P324S substitution in the first residue of a conserved PFPP motif results in a 10-fold increase in a spore's sensitivity to alanine; a P326S change results in the release of phase-dark spores, in which the receptor may be in an "activated" or "quasigerminated" state. Substitutions in residues 398 to 400, in a short loop between the last two likely membrane-spanning helices of this central domain, all affect the germination response, with the G398S substitution causing a temperature-sensitive defect. In others, there are wider effects on the receptor: if alanine is substituted for conserved residue N146, H304, or E330, a severe defect in L-alanine germination results. This correlates with the absence of GerAC, suggesting that the assembly or stability of the entire receptor complex has been compromised by the defect in GerAA. In contrast, severely germination-defective mutants such as E129K, L373F, S400F, and M409N mutants retain GerAC at normal levels, suggesting more local and specific effects on the function of GerAA itself. Further interpretation will depend on progress in structural analysis of the receptor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号