首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cladistic analyses of chloroplast DNA disagree with current classifications by placingPolemoniaceae near sympetalous families with two staminal whorls, includingFouquieriaceae andDiapensiaceae, rather than near sympetalous families with a single staminal whorl, such asHydrophyllaceae andConvolvulaceae. To explore further the affinities ofPolemoniaceae, we sequenced 18S ribosomal DNA for eight genera ofPolemoniaceae and 31 families representing a broadly definedAsteridae. The distribution of variation in these sequences suggest some sites are hypervariable and multiple hits at these sites have obscured much of the hierarchical structure present in the data. Nevertheless, parsimony, least-squares minimum evolution, and maximum likelihood methods all support a monophyleticPolemoniaceae that is placed nearFouquieriaceae, Diapensiaceae and related ericalean families.  相似文献   

2.
Summary Two strains ofEeniella nana were examined for their partial base sequences of 18S and 26S rRNAs. In the partial base sequences of 18S rRNA (prositions 1451 through 1618, 168 bases) the strains ofE. nana have five, five, four and eleven base differences with those ofDekkera bruxellensis (type species).D. anomala (andBrettanomyces anomalus),D. naardenensis andD. custersiana, respectively. In the 26S rRNA partial base sequencings (positions 1611 through 1835, 225 bases and positions 493 through 622, 130 bases) the base differences were 46, 43, 34 and 40 and the percent similarities were 53–54, 51–54, 56–57 and 51–53, respectively. The sequence data obtained are discussed phylogenetically and taxonomically, especially on retention of the generic nameEeniella.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.Significance of the coenzyme Q system in the classification of yeasts and yeast-like organisms. Part LVIII. For part LVII, see ref. [20].  相似文献   

3.
The classification of taxa within Collembola (Springtails, Hexapoda) has been controversial. In this study, we combined complete 18S rRNA gene with partial 28S rRNA gene (D7-D10) sequences to investigate the phylogeny of Collembola. About 2500 aligned sites of thirty species representing 29 genera from14 families of Collembola were analyzed, including one species of Neelipleona from which no sequence has been reported previously.The phylogenetic trees were obtained by different methods (maximum parsimony, maximum likelihood, and Bayesian analysis). Our results supported the monophyly of two of the four taxonomic groups of Collembola summarized by Deharveng [Deharveng, L., 2004. Recent advances in Collembola systematics. Pedobiologia 48, 415–433.], namely of Poduromorpha and of Symphypleona. Within Poduromorpha, Neanuridae was monophyletic with high support, but Hypogastruridae was not. Entomobryomorpha was paraphyletic, as the Tomoceroidea (Tomoceridae and Oncopoduridae) was found to be apart from the other entomobryomorphs. In the latter Isotomoidea and Entomobryoidea joined into a group with moderate support. Within Symphypleona, the phylogenetic relationship [(Sminthuridae + Bourletiellidae) + Sminthurididae] was consistent with traditional morphological studies. Neelipleona grouped with Symphypleona in all trees, with moderate support in the ML and Bayesian analyses.  相似文献   

4.
The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the first of the Alexandrium taxa to diverge, followed by Alexandrium margalefii. All three are members of the Alexandrium subgenus Gessnerium Halim nov. comb.  相似文献   

5.
The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Tanymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata ("Family" Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae ("Family" Linderiellidae), which has 11 pairs of trunk limbs. All appear to be part of the Chirocephalidae and share one morphological character: double pre-epipodites on at least part of their legs. That Linderiella is part of the Polyartemiinae suggests that multiplication of the number of limbs occurred once, but was lost again in Linderiella. Within Chirocephalidae, we found two further clades, the Eubranchipus-Pristicephalus clade and the Chirocephalus clade. Pristicephalus is reinstated as a genus.  相似文献   

6.
Complete nuclear-encoded small-subunit 18S rRNA (=SSU rRNA) gene sequences were determined for the prasinophyte green alga Mantoniella squamata; the charophycean green algae Chara foetida, Coleochaete scutata, Klebsormidium flaccidum, and Mougeotia scalaris; the bryophytes Marchantia polymorpha, Fossombronia pusilla, and Funaria hygrometrica; and the lycopod Selaginella galleottii to get a better insight into the sequential evolution from green algae to land plants. The sequences were aligned with several previously published SSU rRNA sequences from chlorophytic and charophytic algae as well as from land plants to infer the evolutionary relationships for major evolutionary lineages within the Chlorobionta by distance matrix, maximum parsimony, and maximum likelihood analyses. Phylogenetic trees created by the different methods consistently placed the Charophyceae on the branch leading to the land plants. The Charophyceae were shown to be polyphyletic with the Charales (charalean algae) diverging earlier than the Coleochaetales, Klebsormidiales, Chlorokybales, and Zygnematales (charophycean algae) which branch from a point closer to the land plants in most analyses. Maximum parsimony and maximum likelihood analyses imply a successive evolution from charophycean algae, particularly Coleochaetales, to bryophytes, lycopods, and seed plants. In contrast, distance matrix methods group the bryophytes together with the charophycean algae, suggesting a separate evolution of these organisms compared with the club moss and the seed plants. Correspondence to.: V.A.R. Huss  相似文献   

7.
Species of the order Mysida (Crustacea, Peracarida) are shrimp-like animals that occur in vast numbers in coastal regions of the world. The order Mysida comprises 1,053 species and 165 genera. The present study covers 25 species of the well-defined Mysidae, the most speciose family within the order Mysida. 18S rRNA sequence analysis confirms that the subfamily Siriellinae is monophyletic. On the other hand the subfamily Gastrosaccinae is paraphyletic and the subfamily Mysinae, represented in this study by the tribes Mysini and Leptomysini, consistently resolves into three independent clades, and hence is clearly not monophyletic. The tribe Mysini is not monophyletic either, and forms two clades of which one appears to be closely related to the Leptomysini. Our results are concordant with a number of morphological differences urging a taxonomic revision of the Mysidae.  相似文献   

8.
Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data.  相似文献   

9.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

10.
The phylogenetic relationships of xenodontine snakes are inferred from sequence analyses of portions of two mitochondrial genes (12S and 16S ribosomal RNA) in 85 species. Although support values for most of the basal nodes are low, the general pattern of cladogenesis observed is congruent with many independent molecular, morphological, and geographical data. The monophyly of xenodontines and the basal position of North American xenodontines in comparison with Neotropical xenodontines are favored, suggesting an Asian-North American origin of xenodontines. West Indian xenodontines (including endemic genera and members of the genus Alsophis) appear to form a monophyletic group belonging to the South American clade. Their mid-Cenozoic origin by dispersal using ocean currents is supported. Within South American mainland xenodontines, the tribes Hydropsini, Pseudoboini, and Xenodontini are monophyletic. Finally, our results suggest that some morphological and ecological traits concerning maxillary dentition, macrohabitat use, and foraging strategy have appeared multiple times during the evolution of xenodontine snakes.  相似文献   

11.
A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.  相似文献   

12.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

13.
The nucleotide sequence analysis of the PCR products corresponding to the variable large-subunit rRNA domains D1, D2, D9, and D10 from ten representative dinoflagellate species is reported. Species were selected among the main laboratory-grown dinoflagellate groups: Prorocentrales, Gymnodiniales, and Peridiniales which comprise a variety of morphological and ecological characteristics. The sequence alignments comprising up to 1,000 nucleotides from all ten species were employed to analyze the phylogenetic relationships among these dinoflagellates. Maximum parsimony and neighbor joining trees were inferred from the data generated and subsequently tested by bootstrapping. Both the D1/D2 and the D9/D10 regions led to coherent trees in which the main class of dinoflagellates, Dinophyceae, is divided in three groups: prorocentroid, gymnodinioid, and peridinioid. An interesting outcome from the molecular phylogeny obtained was the uncertain emergence of Prorocentrum lima. The molecular results reported agreed with morphological classifications within Peridiniales but not with those of Prorocentrales and Gymnodiniales. Additionally, the sequence comparison analysis provided strong evidence to suggest that Alexandrium minutum and Alexandrium lusitanicum were synonymous species given the identical sequence they shared. Moreover, clone Gg1V, which was determined Gymnodinium catenatum based on morphological criteria, would correspond to a new species of the genus Gymnodinium as its sequence clearly differed from that obtained in G. catenatum. The sequence of the amplified fragments was demonstrated to be a valuable tool for phylogenetic and taxonomical analysis among these highly diversified species. Correspondence to: J. M. Bautista  相似文献   

14.
The evolutionary position of the yew family, Taxaceae, has been very controversial. Some plant taxonomists strongly advocate excluding Taxaceae from the conifer order and raising its taxonomic status to a new order or even class because of its absence of seed cones, contrary to the case in the majority of conifers. However, other authors believe that the Taxaceae are not fundamentally different from the rest of the conifers except in that they possess the most reduced solitary-ovule cones. To resolve the controversy, we have sequenced the 18S rRNA genes from representative gymnosperms: Taxus mairei (Taxaceae), Podocarpus nakaii (Podocarpaceae), Pinus luchuensis (Pinaceae), and Ginkgo biloba (Ginkgoales). Our phylogenetic analysis of the new sequence data with the published 18S rRNA sequence of Zamia pumila (a cycad) as an outgroup strongly indicates that Taxus, Pinus, and Podocarpus form a monophyletic group with the exclusion of Ginkgo and that Taxus is more closely related to Pinus than to Podocarpus. Therefore, Taxaceae should be classified as a family of Coniferales. Our finding that Taxaceae, Pinaceae, and Podocarpaceae form a clade contradicts both the view that the uniovulate seed of Taxaceae is a primitive character and the view that the Taxaceae are descendants of the Podocarpaceae. Rather, the uniovulate seed of Taxaceae and that of some species of Podocarpus appear to have different origins, probably all reduced from multiovulate cones. Correspondence to: W.-H. Li  相似文献   

15.
A molecular phylogenetic analysis of Cynoglottis was performed to evaluate previous hypotheses based on non-molecular evidence concerning the position of this genus within Boraginaceae tribe Boragineae. ITS-5.8S and trnLUAA sequences from the nuclear and chloroplast non-coding genomes were obtained for four Cynoglottis taxa and selected members of the related genera Anchusa, Anchusella, Gastrocotyle, Brunnera and Pentaglottis. Cynoglottis is monophyletic, but neither trnL nor ITS support a close relationship with Brunnera, unlike previously supposed on morphological grounds. Brunnera is, instead, related to the southwestern European monotypic genus Pentaglottis, with which it forms a basal clade. ITS-5.8S sequences show that Anchusa thessala, a southeastern European annual species of Anchusa subg. Buglossellum, is sister to Cynoglottis and that the two taxa form a clade which also includes the Balkan endemic Gastrocotyle macedonica. Species of Anchusa subg. Anchusa form a separate lineage with high bootstrap support, suggesting that this heterogeneous genus is paraphyletic with respect to Cynoglottis. ITS sequences also discriminate between the Balkan-Apenninic diploid C. barrelieri and the Anatolian tetraploid C. chetikiana, albeit with low support. The molecular results are discussed in the light of karyological, morphological and chorological aspects.This work has been supported by M.I.U.R. 40% 2003 and the University of Firenze.  相似文献   

16.
基于18S基因序列的姬小蜂分子系统发育   总被引:4,自引:0,他引:4  
本文基于18S rDNA部分序列,用MP和Baysian方法研究了姬小蜂科的系统发育,对姬小蜂科的单系性及其与其它小蜂科间的关系进行了讨论。姬小蜂亚科、灿姬小蜂亚科和啮姬小蜂亚科形成三个独立的支系,研究结果支持它们各自的单系性,但本结果没有明确姬小蜂科的单系性。研究结果同时还支持瑟姬小蜂族、扁股姬小蜂族和狭面姬小蜂族三个族的地位,但不支持姬小蜂族的地位。姬小蜂科的单系性及其与其它小蜂间的关系还需更多的形态学数据和更多的基因序列来进一步研究[动物学报52 (2) : 288 -301 , 2006]。  相似文献   

17.
Mitochondrial DNA (12S rRNA, 16S rRNA) sequences were analysed within Tarentola mauritanica and other selected species of Tarentola. Several highly genetically distinct lineages occur in North Africa, revealing phylogroups in southern and central Morocco, northern Morocco, Algeria, Tunisia, and Libya. A single haplotype characterizes populations across Spain, Portugal, Italy, Menorca, Crete, and Tunisia raising the possibility of an anthropogenic introduction followed by rapid population expansion throughout southern Europe. T. mauritanica is paraphyletic with respect to T. angustimentalis, a Canary islands endemic. The high genetic diversity observed across North Africa suggests T. mauritanica may represent a species complex.  相似文献   

18.
The nuclear ITS region of 19 species of Alnus was amplified and sequenced. The inferred molecular phylogeny shows that all species of the genus Alnus form a monophyletic group close to Betula and that the fundamental dichotomy within the genus lies between the subgenera Alnaster and Gymnothyrsus, sensu Murai (1964). The subgenus Alnaster appears to be basal in the genus, based on archaism of morphological features, and branching close to the root of the trees due to low ITS divergence from genus Betula. The monophyly of the section Clethropsis is not supported by the present data: Alnus nepalensis is positioned in the subgenus Gymnothyrsus, away from A. nitida and A. maritima. Surprisingly, A. formosana sect. Japonicae is closely tied to A. maritima sect. Clethropsis, with which it shares few morphological traits, and is separate from A. japonica sect. Japonicae with which it shares many traits. An increase in substitution rate is noted in the group comprising A. formosana, A. maritima and A. nitida relative to the rest of the genus, which appears to have had, on the average, a very slow mutation rate. Alnus glutinosa, the designated type for the genus, appears to be representative of the genus both for morphological characters and evolutionary rate. North-East Asia is comforted in its position of origin of the genus since not only does it have the highest number of species and representatives in all deep branching lineages, there are also fewer transcontinental migrations when a North-East Asian ancestor is postulated than when a North American ancestor is postulated.  相似文献   

19.
The phylogenetic relationships of Chalara and allied taxa are studied based on ribosomal DAN sequences. Partial 28S rDNA and 18S rDNA regions from 26 strains were sequenced in this study. These and related sequences from GenBank were analyzed using parsimony and Bayesian analyses. Most of the Chalara species clustered in a strongly supported monophyletic lineage representing Helotiales. However, a few Chalara species appeared closely related to Xylariales. The phylogenetic significance of morphological characters observed in Chalara species are evaluated based on our sequence analyses. Conidial septation, conidial width and conidiophore pigmentation are thought to be indicative in understanding their evolutionary relationships. Sterile setae, which traditionally have been used to delimitate Chaetochalara from Chalara, are phylogenetically insignificant.  相似文献   

20.
The presence of Pneumocystis organisms was detected by nested-PCR at mitochondrial large subunit (mtLSU) rRNA gene in 23 respiratory samples from Asian macaques representing two species: Macaca mulatta and M. fascicularis. A very high level of sequence heterogeneity was detected with 18 original sequence types. Two genetic groups of Pneumocystis could be distinguished from the samples. Within each group, the extent of genetic divergence was low (2.5+/-1.4% in group 1 and 2.3+/-1.7% in group 2). Genetic divergences were systematically higher when macaque-derived sequence types were compared with Pneumocystis mtLSU sequences from other primate species (from 5.3+/-2.7% to 19.3+/-3.0%). The two macaque-derived groups may be considered as distinct Pneumocystis species. Surprisingly, these Pneumocystis species were recovered from both M. mulatta and M. fascicularis suggesting that host-species restriction may not systematically occur in the genus Pneumocystis. Alternatively, these observations question about the species concept in macaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号