首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Deregulated TNF production, be it low or high, characterizes many autoimmune diseases. Recent evidence supports a dualistic, pro-inflammatory and immune- or disease-suppressive role for TNF in these conditions. Blocking TNF in autoimmune-prone chronic inflammatory diseases may, therefore, lead to unpredictable outcomes, depending on timing and duration of treatment. Indeed, blockade of TNF in human rheumatoid arthritis or inflammatory bowel disease patients, although so far impressively beneficial for the majority of patients, it has also led to a significant incidence of drug induced anti-dsDNA production or even in manifestations of lupus and neuro-inflammatory disease. Notably, anti-TNF treatment of multiple sclerosis patients has led almost exclusively to immune activation and disease exacerbation. We discuss here recent evidence in murine disease models, indicating an heterogeneity of TNF receptor usage in autoimmune suppression versus inflammatory tissue damage, and put forward a rationale for a predictably beneficial effect of 'anti-TNFR' instead of 'anti-TNF' treatment in human chronic inflammatory and autoimmune conditions.  相似文献   

2.
It is not known what is required for successive relapses in autoimmune diseases or evolution to a progressive chronic disease. Autoimmune arthritis caused by passive transfer of autoantibodies against glucose 6-phosphate isomerase is transient and therefore lends itself well to test for what might extend the disease. Herpesviruses have long been suspected of contributing to human autoimmune disease. We infected mice with a murine gamma-herpesvirus (MHV-68). In immunodeficient mice, transient arthritis was followed by a relapse. This was due to lytic viral infection of synovial tissues demonstrated by PCR, immunohistochemistry, and electron microscopy. Latent infection could be reactivated in the synovium of normal mice when treated with Cytoxan and this was associated with increased clinical arthritis. We conclude that herpesviruses may play an ancillary pathogenic role in autoimmune arthritis by infection of the inflammatory target tissue.  相似文献   

3.
Helminth parasites are masters of immune regulation; a likely prerequisite for long-term survival by circumventing their hosts’ attempt to eradicate them. From a translational perspective, knowledge of immune events as a response to infection with a helminth parasite could be used to reduce the intensity of unwanted inflammatory reactions. Substantial data have accumulated showing that inflammatory reactions that promote a variety of auto-inflammatory diseases are dampened as a consequence of infection with helminth parasites, via either the mobilization of an anti-worm spectrum of immune events or by the direct effect of secretory/excretory bioactive immunomodulatory molecules released from the parasite. However, many issues are outstanding in the definition of the mechanism(s) by which infection with helminth parasites can affect the outcome, positively or negatively, of concomitant disease. We focus on a subgroup of this complex group of metazoan parasites, the cestodes, summarizing studies from rodent models that illustrate if, and by what mechanisms, infection with tapeworms ameliorate or exaggerate disease in their host. The ability of infection with cestodes, or other classes of helminth, to worsen a disease course or confer susceptibility to intracellular pathogens should be carefully considered in the context of ‘helminth therapy’. In addition, poorly characterised cestode extracts can regulate murine and human immunocyte function, yet the impact of these in the context of autoimmune or allergic diseases is poorly understood. Thus, studies with cestodes, as representative helminths, have helped cement the concept that infection with parasitic helminths can inhibit concomitant disease; however, issues relating to long-term effects, potential side-effects, mixed pathogen infections and purification of immunomodulatory molecules from the parasite remain as challenges that need to be addressed in order to achieve the use of helminths as anti-inflammatory agents for human diseases.  相似文献   

4.
Chemokines and their receptors are central to the inflammatory process and are attractive therapeutic targets. Drugs that inhibit chemokine receptors are approved for the treatment of HIV infection and for stem cell mobilization, but none have been approved yet for the treatment of inflammatory and/or autoimmune diseases. We analyse the challenges of developing chemokine receptor antagonists, and propose that inappropriate target selection and ineffective dosing, not the 'redundancy' of the chemokine system, are the main barriers to their use as anti-inflammatory therapies. We highlight evidence suggesting that chemokine receptor inhibition will prove to be an effective therapy in inflammatory diseases.  相似文献   

5.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation.Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.  相似文献   

6.
Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host interactions associated with various disorders, including Clostridium difficile infection, inflammatory bowel disease, diabetes mellitus, cancer, liver cirrhosis, gutbrain disease and others. To discuss the experiences of using microbes to treat human diseases from ancient China to current era should be important in moving standardized FMT forward and achieving a better future. Here, we review the changing concept of microbiota transplantation from FMT to selective microbiota transplantation, methodology development of FMT and stepup FMT strategy based on literature and state experts’ perspectives.  相似文献   

7.
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre‐eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially ‘external’ causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress‐induced iron dysregulation, and (ii) its ability to awaken dormant, non‐replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.  相似文献   

8.
It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.  相似文献   

9.
Dendritic cells (DC) are required for priming antigen‐specific T cells and acquired immunity to many important human pathogens, including Mycobacteriuim tuberculosis (TB) and influenza. However, inappropriate priming of auto‐reactive T cells is linked with autoimmune disease. Understanding the molecular mechanisms that regulate the priming and activation of naïve T cells is critical for development of new improved vaccines and understanding the pathogenesis of autoimmune diseases. The serine/threonine kinase IKKα (CHUK) has previously been shown to have anti‐inflammatory activity and inhibit innate immunity. Here, we show that IKKα is required in DC for priming antigen‐specific T cells and acquired immunity to the human pathogen Listeria monocytogenes. We describe a new role for IKKα in regulation of IRF3 activity and the functional maturation of DC. This presents a unique role for IKKα in dampening inflammation while simultaneously promoting adaptive immunity that could have important implications for the development of new vaccine adjuvants and treatment of autoimmune diseases.  相似文献   

10.
Viruses have been implicated in the initiation, progression, and exacerbation of several human autoimmune diseases. Evidence also exists that viruses can protect against autoimmune disease. Several proposed mechanisms explain the viral effects. One mechanism is “molecular mimicry” which represents a shared immunologic epitope with a microbe and the host. We consider, using a simple mathematical model, whether and how a viral infection with molecular mimicry can be beneficial or detrimental for autoimmune disease. Furthermore, we consider the possibility of development of a vector therapeutic vaccine that can relieve autoimmune disease symptoms. Our findings demonstrate that vaccine therapy success necessitates (i) appropriate immune response function, (ii) appropriate affinities with self and non-self antigen, and (iii) a replicative vector vaccine. Moreover, the model shows that the viral infection can cause autoimmune relapses.  相似文献   

11.
Autoimmunity has been proposed as the cause of several human chronic inflammatory diseases, and recent animal studies show that viruses can induce autoimmune disease. These studies demonstrate how viruses might misdirect the immune system, and here we discuss critically the evidence that similar phenomena may lead to human disease.  相似文献   

12.
Inflammatory myopathies are a group of autoimmune diseases that affect muscles. In humans, the most common inflammatory myopathies are polymyositis, dermatomyositis, and inclusion body myositis. Autoantibodies may be found in humans with inflammatory myopathies, and these play an important role in diagnosis and disease classification. However, these Abs are typically not muscle specific. Spontaneously occurring canine inflammatory myopathies may be good parallel disorders and provide insights into human myositis. In dogs with inflammatory myopathy, muscle-specific autoantibodies have been found, especially in masticatory muscle myositis. We have identified the major Ag recognized by the autoantibodies in canine masticatory muscle myositis. This Ag is a novel member of the myosin binding protein-C family, which we call masticatory myosin binding protein-C (mMyBP-C). mMyBP-C is localized not only within the masticatory muscle fibers, but also at or near their cell surface, perhaps making it accessible as an immunogen. The gene for mMyBP-C also exists in humans, and mMyBP-C could potentially play a role in certain human inflammatory myopathies. Understanding the role of mMyBP-C in this canine inflammatory myopathy may advance our knowledge of mechanisms of autoimmune inflammatory muscle diseases, not only in dogs, but also in humans.  相似文献   

13.
14.
Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.  相似文献   

15.

We assessed the potential for microbial interactions influencing a well-documented host–pathogen system. Mycoplasma agassizii is the known etiological agent of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii), but disease in wild animals is extremely heterogeneous. For example, a much larger proportion of animals harbor M. agassizii than those that develop disease. With the availability of a new quantitative PCR assay for a microbe that had previously been implicated in disease, Pasteurella testudinis, we tested 389 previously collected samples of nasal microbes from tortoise populations across the Mojave desert. We showed that P. testudinis is a common commensal microbe. However, we did find that its presence was associated with higher levels of M. agassizii among the tortoises positive for this pathogen. The best predictor of P. testudinis prevalence in tortoise populations was average size of tortoises, suggesting that older populations have higher levels of P. testudinis. The prevalence of co-infection in populations was associated with the prevalence of URTD, providing additional evidence for an indirect interaction between the two microbes and inflammatory disease. We showed that URTD, like many chronic, polymicrobial diseases involving mucosal surfaces, shows patterns of a polymicrobial etiology.

  相似文献   

16.
Background. To investigate whether the Helicobacter pylori status influences levels of antibodies against mycobacterial heat shock protein (hsp) 65 and human hsp60 in systemic autoimmune diseases and to study the concentration of anti‐H. pylori antibodies in autoimmune patients and healthy controls. Materials and Methods. Antibodies against human heat‐shock protein hsp60, mycobacterial heat‐shock protein hsp65 were analyzed by ELISA. Anti‐Helicobacter antibodies were determined by enzyme immunoassay. Results. There was a markedly higher prevalence of H. pylori infection in undifferentiated connective tissue disease (82%) (n = 33) and systemic sclerosis (78%) (n = 55) but not in systemic lupus erythematosus (n = 49), polymyositis/dermatomyositis (n = 14), rheumatoid arthritis (n = 21) or primary Raynaud's syndrome (n = 26) compared with controls (59%) (n = 349). In autoimmune diseases H. pylori infection was associated with elevated levels of antihsp65 (p = .008) but not of antihsp60. Anti‐hsp65 levels were significantly higher in H. pylori‐infected (n = 129) than in uninfected patients (n = 69) (p = .0007). Conclusions. These findings indicate that in autoimmune diseases the infection with the H. pylori bacterium is associated with increased concentration of antimycobacterial hsp65.  相似文献   

17.
18.
Mice have frequently been used to model human diseases involving immune dysregulation such as autoimmune and inflammatory diseases.These models help elucidatethe mechanisms underlying the disease and in the development of novel therapies.However,if mice are deficient in certain cells and/or effectors associated with human diseases,how can their functions be investigated in this species?Mucosal-associated invariant T(MAIT)cells,a novel innate-like T cell family member,are a good example.MAIT cells are abundant in humans but scarce in laboratory mice.MAIT cells harbor an invariant T cell receptor and recognize nonpeptidic antigens vitamin B2metabolites from bacteria and yeasts.Recent studies have shown that MAIT cells play a pivotal role in human diseases such as bacterial infections and autoimmune and inflammatory diseases.MAIT cells possess granulysin,a human-specific effector molecule,but granulysin and its homologue are absent in mice.Furthermore,MAIT cells show poor proliferation in vitro.To overcome these problems and further our knowledge of MAIT cells,we have established a method to expand MAIT cells via induced pluripotent stem cells(iP SCs).In this review,we describe recent advances in the field of MAIT cell research and our approach for human disease modeling with iP SCderived MAIT cells.  相似文献   

19.
Genome-wide analyses have shown that the MHC class II region is the principal locus that confers susceptibility to a number of human autoimmune diseases. Due to the high degree of linkage disequilibrium across the MHC, it has been difficult to dissect the contribution of individual genes to disease susceptibility. As a result, intensive efforts have been made to generate mice transgenic for human class II molecules as models of autoimmune disease. However, in every case, additional manipulations-such as immunization with Ag in adjuvant, expression of immunostimulants on target tissues, or coexpression of TCR transgenes-have been required to induce disease. In this study, we show that expression of the human HLA-DQ8 (DQA1*0301/DQB1*0302) molecule alone in three lines of transgenic nonobese diabetic murine class II-deficient (mII(-/-)) mice results in the spontaneous development of autoimmune myocarditis. The disease shares key features of human myocarditis and was characterized by lymphocytic infiltrates in the myocardium and cardiac myocyte destruction, circulating IgG autoantibodies against cardiac myosin heavy chain, and premature death due to heart failure. We demonstrate that myocarditis could be transferred into healthy HLA-DQ8(+)RAG-1(-/-)mII(-/-) nonobese diabetic recipients with lymphocytes, but not sera. It has been widely thought that autoimmune myocarditis is of infectious etiology, with the immune responses arising secondary to cardiac damage from pathogens. These studies provide direct experimental evidence that spontaneous autoimmune myocarditis can occur in the absence of infection and that expression of HLA-DQ8 confers susceptibility to this organ-specific autoimmune disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号