首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Ator  J Stubbe 《Biochemistry》1985,24(25):7214-7221
Sodium borohydride or ethanethiol protects the Escherichia coli ribonucleoside-diphosphate reductase (RDPR) from inactivation by 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP). Incubation of [3'-3H]ClUDP with RDPR in the presence of NaBH4 allowed trapping of [3H]-2'-deoxy-3'-ketouridine 5'-diphosphate. Degradation of the reduced ketone by a combination of enzymatic and chemical methods indicated that the hydrogen originally present in the 3'-position of ClUDP is transferred to the beta-face of the 2'-position of 2'-deoxy-3'-keto-UDP. RDPR therefore catalyzes a net 1,2 hydrogen shift. Incubation of RDPR with ClUDP in the presence of ethanethiol allowed trapping of 2-methylene-3(2H)-furanone, the species responsible for inactivation of RDPR. Trapped 2-[(ethylthio)methyl]-3(2H)-furanone was identical by 1H NMR spectroscopy with material synthesized chemically. Both subunits of the enzyme are covalently radiolabeled in the reaction of RDPR with [5'-3H]ClUDP. Studies with [3'-3H]ClUDP and prereduced RDPR in the absence of a reductant and with oxidized RDPR indicated that the redox-active thiols of the B1 subunit are not involved in inactivation of the enzyme by ClUDP.  相似文献   

2.
S P Salowe  M A Ator  J Stubbe 《Biochemistry》1987,26(12):3408-3416
Ribonucleoside diphosphate reductase (RDPR) from Escherichia coli was completely inactivated by 1 equiv of the mechanism-based inhibitor 2'-azido-2'-deoxyuridine 5'-diphosphate (N3UDP). Incubation of RDPR with [3'-3H]N3UDP resulted in 0.2 mol of 3H released to solvent per mole of enzyme inactivated, indicating that cleavage of the 3' carbon-hydrogen bond occurred in the reaction. Incubation of RDPR with [beta-32P]N3UDP resulted in stoichiometric production of inorganic pyrophosphate. One equivalent of uracil was eliminated from N3UDP, but no azide release was detected. Analysis of the reaction of RDPR with [15N3]N3UDP by mass spectrometry revealed that the azide moiety was converted to 0.9 mol of nitrogen gas per mole of enzyme inactivated. The tyrosyl radical of the B2 subunit was destroyed during the inactivation by N3UDP as reported previously [Sj?berg, B.-M., Gr?slund, A., & Eckstein, F. (1983) J. Biol. Chem. 258, 8060-8067], while the specific activity of the B1 subunit was reduced by half. Incubation of [5'-3H]N3UDP with RDPR resulted in stoichiometric covalent radiolabeling of the enzyme. Separation of the enzyme's subunits by chromatofocusing revealed that the modification was specific for the B1 subunit.  相似文献   

3.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of [3'-3H]ADP, [3'-H]UDP, and [5-3H] UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of [3'-3H]ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of [beta-32P]ClUDP with the reductase resulted in the production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase (Harris, G., Ator, M., and Stubbe, J. A. (1984) Biochemistry 23, 5214-5225; Ator, M., and Stubbe, J. A. (1985) Biochemistry 24, 7214-7221).  相似文献   

5.
G W Ashley  G Harris  J A Stubbe 《Biochemistry》1988,27(20):7841-7845
The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP) into a mixture of 2'-deoxyuridine triphosphate (dUTP) and the unstable product 3'-keto-2'-deoxyuridine triphosphate (3'-keto-dUTP). This ketone can be trapped by reduction with NaBH4, producing a 4:1 mixture of xylo-dUTP and dUTP. When [3'-3H]ClUTP is treated with enzyme in the presence of NaBH4, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the 3H in ClUTP. Degradation of these isomeric nucleosides has established the location of the 3H in 3'-keto-dUTP as predominantly 2'(S). The xylo-dU had 98.6% of its label at the 2'(S) position and 1.5% at 2'(R). The isolated dU had 89.6% of its label at 2'(S) and 1.4% at 2'(R), with the remaining 9% label inferred to be at the 3'-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1000 mixture of dUTP and 3'-keto-dUTP, where the 3'-hydrogen of ClUTP is retained at 3' during production of dUTP and is transferred to 2'(S) during production of 3'-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin (Ashley et al., 1986) are discussed in terms of reductase being a model for the B12-dependent rearrangement reactions.  相似文献   

6.
Incubation of [3'-3H]2'-chloro-2'-deoxyuridine 5'-triphosphate (CldUTP) with adenosylcobalamin (AdoCbl), reductant, and ribonucleotide reductase from Lactobacillus leichmannii results in the production of 3H2O, uracil, tripolyphosphate, 5'-deoxyadenosine, and cob(II)alamin. The rate of 3H2O release (0.19 mumol/min/mg) is almost identical with the rate of UTP reduction (0.24 mumol/min/mg). The amount of 3H2O release is dependent upon the enzyme to cofactor ratio. With a ribonucleotide reductase: AdoCbl ratio of 1:1000, approximately 500 eq of 3H2O are released. At this time the enzyme is still active, but further destruction of cofactor and turnover of CldUTP is prevented by competitive inhibition of Co(II) + 5'-deoxyadenosine with AdoCbl for binding to ribonucleotide reductase. The 5'-deoxyadenosine and AdoCbl reisolated during incubation of [3'-3H]CldUTP and ribonucleotide reductase contains no detectable radioactivity.  相似文献   

7.
M L Vazquez  R B Silverman 《Biochemistry》1985,24(23):6538-6543
A mechanism previously proposed for inactivation of monoamine oxidase (MAO) by N-cyclopropylbenzylamine (N-CBA) [Silverman, R. B., & Hoffman, S. J. (1980) J. Am. Chem. Soc. 102, 884-886] is revised. Inactivation of MAO by N-[1-3H]CBA results in incorporation of about 3 equiv of tritium into the enzyme and release of [3H]acrolein. Treatment of inactivated enzyme with benzylamine, a reactivator for N-CBA-inactivated MAO, releases only 1 equiv of tritium as [3H]acrolein concomitant with reactivation of the enzyme. Even after MAO is inactivated by N-[1-3H]CBA, the reaction continues. At pH 7.2, a linear release of [3H]acrolein is observed for 70 h, which produces 55 equiv of [3H]acrolein while 2.3 equiv of tritium is incorporated into the enzyme. At pH 9, only 3.5 equiv of [3H]acrolein is detected in solution after 96 h, but 40 equiv of tritium is incorporated into the enzyme, presumably as a result of greater ionization of protein nucleophiles at the higher pH. N-[1-3H]Cyclopropyl-alpha-methylbenzylamine (N-C alpha MBA) produces the same adduct as N-CBA but gives only 1-1.35 equiv of tritium bound after inactivation of the enzyme. Denaturation of labeled enzyme results in reoxidation of the flavin without release of tritium, indicating attachment is not to the flavin but rather to an amino acid residue. Enzyme inactivated with N-[1-3H]C alpha MBA is reactivated by benzylamine with the release of 1 equiv of [3H]acrolein, which must have come from an adduct attached to an active site amino acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Incubation of the pyrimidine [3'-3H]UDP with ribonucleotide reductase resulted in an isotope effect on the conversion to dUDP which varied as a function of pH and allosteric effectors (pH, kH/kT, effector): 6.6, 4.7, ATP; 7.6, 3.3, ATP; 7.6, 2.6, dATP; 7.6, 2.0, TTP; 8.4, 2.8, ATP. During this reaction 3H2O was also released. The lower the pH of the reaction, the larger the isotope effect, and the smaller the amount of 3H2O produced. At 50% conversion of UDP to dUDP and at pH 7.6, approximately 0.5% of total 3H present in solution was volatilized, while at pH 8.4, approximately 0.9% was volatilized. Similar experiments in which the purine [3'-3H]ADP was incubated with ribonucleotide reductase also resulted in an isotope effect on its conversion to dATP which varied as a function of pH (pH, kH/kT with dGTP as an effector); 6.6, 1.9; 7.6, 1.7; 8.6, 1.4. Furthermore, 3H2O was also released as a function of the extent of the reaction. At 50% turnover and pH 7.6, approximately 0.6% of 3H2O was volatilized, while at pH 8.6 approximately 1.25% was released. Two control experiments in which either the B1 subunit of ribonucleotide reductase was inactivated with 2'-chloro-2'-deoxyuridine 5'-diphosphate or the B2 subunit of ribonucleotide reductase was inactivated with 2'-azido-2'-deoxyuridine 5'-diphosphate and then the enzyme incubated with [3'-3H]ADP or [3'-3H]UDP indicated that in neither case was 3H released. Both B1 and B2 subunits are required for cleavage of the 3'-C--H bond. Incubation of [3'-3H]dADP or [3'-3H]dUDP with ribonucleotide reductase produced no measurable release of 3H. These data clearly indicate that conversion of a purine or pyrimidine diphosphate to a deoxynucleotide diphosphate by Escherichia coli ribonucleotide reductase requires cleavage of the 3'-C--H bond of the substrate. The fate of the 3'-H of the substrate was also determined. Incubation of [3'-2H]UDP with ribonucleotide reductase resulted in the production of [3'-2H]dUDP.  相似文献   

9.
Ribonucleotide reductase (RDPR) from Escherichia coli is composed of two subunits, R1 and R2, both of which are required to catalyze the conversion of nucleotides to deoxynucleotides. This reduction process is accompanied by oxidation of two cysteines within the active site to a disulfide. One of these putative active site cysteines, C225, has been mutated to a serine, and the properties of this mutant (C225SR1) have been investigated in detail. Incubation of C225SR1 and R2 with [3'-3H,U-14C]UDP results in time-dependent inactivation of the enzyme! This inactivation is accompanied by production of 2.4 uracils, 3H2O, and 3H,14C-labeled protein with an absorbance change at 320 nm. There is an isotope effect (kH/k3H) on uracil production of 3.2. In addition, the tyrosyl radical on R2 is reduced. The observation of 3H2O, indicative of 3' carbon-hydrogen bond cleavage and loss of the tyrosyl radical, provides a direct test of our mechanistic hypothesis that cleavage of this bond occurs concomitantly with tyrosyl radical reduction. Incubation of [3'-2H]UDP with C225SR1 and R2 resulted in a V and V/K isotope effect on loss of the radical of 2.0 and 2.0, respectively. These studies provide the first direct evidence for protein radical involvement in catalysis. Reduction of the tyrosyl radical on R2 is accompanied by a stoichiometric cleavage of the R1 polypeptide into two new polypeptides of 26 and 61 kDa. The 26-kDa polypeptide is the N-terminus of R1, and hence cleavage of the polypeptide is occurring in the region of the mutation. The N-terminus of the 61-kDa polypeptide is blocked.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The interaction of the ribonucleoside-triphosphate reductase of Lactobacillus leichmannii with various 2'-halogenated ribo- and arabinonucleoside triphosphates has been investigated. All analogues examined acted as mechanism-based inactivators of the enzyme, producing base, triphosphate, and halide. In all cases, the inactive enzyme had developed the distinctive chromophore at 320 nm that is characteristic of enzyme inactivated by 2-methylene-3(2H)-furanone. The striking similarities between these results and those previously reported for the inactivation of this enzyme by 2'-chloro-2'-deoxyuridine triphosphate suggest a common reaction path for all 2'-halonucleotides. In the pyrimidine series, it was found that 2'-fluoro- and 2'-chloronucleotides partitioned between inactivation and formation of the normal reduction product 2'-deoxynucleotide. Normal reduction predominated with 2'-fluoronucleotides, whereas it was a minor pathway for 2'-chloro-2'-deoxyuridine triphosphate. With 2'-chloro-2'-deoxyuridine triphosphate, the relative partitioning between the two modes was pH dependent: the amount of 2'-deoxyuridine triphosphate formed increased 2.8-fold upon changing from pH 6.1 to pH 8.3. The ability of 2'-arabinohalonucleotides to inactivate ribonucleotide reductase and the variation of partitioning of the pyrimidine analogues with leaving group and reaction pH are consistent with our radical cation hypothesis and support the proposal that the difference between normal catalysis and inactivation is related to the protonation state of the reductase.  相似文献   

11.
Inactivation of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase by pyridoxal 5'-P followed by reduction with NaBH4 was studied. Fructose-6-P,2-kinase is over 80% inactivated by 2 mM pyridoxal 5'-P. The stoichiometry of the pyridoxyl-P incorporation and the inactivation of the kinase follows a biphasic curve. The first P-pyridoxyl residue incorporated per protomer does not affect fructose-6-P,2-kinase, but the next two P-pyridoxyl incorporation/protomer results in 80% inactivation. The Km values for ATP and fructose-6-P of the enzymes containing varying amounts of P-pyridoxyl groups at intermediate levels of inactivation are not altered, but Vmax is decreased. Among the metabolites tested, only fructose-2,6-P2 and Mg-ATP are competitive with pyridoxal-P and protect the enzyme against the inactivation. Neither the activity nor the fructose-6-P inhibition of fructose-2,6-bisphosphatase is affected by the modification. The acid hydrolysate of the inactive P-[3H]pyridoxyl enzyme contained only [3H]pyridoxyl lysine. High performance liquid chromatography of tryptic peptides of phospho[3H]pyridoxyl enzymes reveals two peptides which were missing in the enzyme protected by fructose-2,6-P2 or ATP during the modification reaction. These peptides have been isolated, and their amino acid sequences have been determined as Asp-Gln-Asp-Lys-Tyr-Arg and Asp-Val-His-Lys-Tyr. Pyridoxal-P reacts specifically with two lysine residues at the fructose-2,6-P2-binding site of fructose-6-P,2-kinase but not that of fructose-2,6-bisphosphatase. The site may also overlap with the ATP-binding site.  相似文献   

12.
Attempts to isolate deoxyuridine 2'-hydroxylase from Rhodotorula glutinis by the procedure of Warn-Cramer et al. (Warn-Cramer, B. J., Macrander, L. A., and Abbott, M. T. (1983) J. Biol. Chem. 258, 10551-10557) have led to the identification and partial purification of a newly recognized alpha-ketoglutarate-requiring oxygenase. This activity, designated deoxyuridine (uridine) 1'-hydroxylase, in the presence of iron and ascorbate, catalyzes the conversion of deoxyuridine (uridine), O2, and alpha-ketoglutarate to uracil, deoxyribonolactone (ribonolactone), CO2, and succinate. Incubation of [1'-3H]uridine with this activity results in time-dependent formation of uracil concomitant with production of CO2 and 3H2O. No Vmax/Km isotope effect is observed on this reaction. Uracil production is accompanied by stoichiometric production of ribonolactone identified by NMR spectroscopy. Also reported in this paper is the partial purification and characterization of the alpha-ketoglutarate-requiring enzyme, deoxyuridine 2'-hydroxylase. Incubation of [2'-alpha-3H]deoxyuridine with this activity results in concomitant production of uridine and 3H2O. Incubation with [2'-beta-3H] deoxyuridine results in the production of uridine whose specific activity is identical to that of the starting material. This enzyme catalyzes the conversion of deoxyuridine to uridine with retention of configuration. No isotope effect is observed on this transformation.  相似文献   

13.
Incubation of bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA) results in the inactivation of the 3 beta-hydroxysteroid dehydrogenase enzyme activity following pseudo-first-order kinetics. A double-reciprocal plot of 1/kobs versus 1/[5'-FSBA] yields a straight line with a positive y intercept, indicative of reversible binding of the inhibitor prior to an irreversible inactivation reaction. The dissociation constant (Kd) for the initial reversible enzyme-inhibitor complex is estimated at 0.533 mM, with k2 = 0.22 min-1. The irreversible inactivation could be prevented by the presence of NAD+ during the incubation, indicating that 5'-FSBA inactivates the 3 beta-hydroxysteroid dehydrogenase activity by reacting at the NAD+ binding site. Although the enzyme was inactivated by incubation with 5'-FSBA, no incorporation of the inhibitor was found in labeling studies using 5'-[p-(fluorosulfonyl)benzoyl] [14C]adenosine. However, the inactivation of 3 beta-hydroxysteroid dehydrogenase activity caused by incubation with 5'-FSBA could be completely reversed by the addition of dithiothreitol. This indicates the presence of at least two cysteine residues at or in the vicinity of the NAD+ binding site, which may form a disulfide bond catalyzed by the presence of 5'-FSBA. The intramolecular cysteine disulfide bridge was found between the cysteine residues in the peptides 274EWGFCLDSR282 and 18IICLLVEEK26, by comparing the [14C]iodoacetic acid labeling before and after recovering the enzyme activity upon the addition of dithiothreitol.  相似文献   

14.
3-Chloropropionyl coenzyme A (CoA) irreversibly inhibits rat mammary gland fatty acid synthase. Enzyme inactivation proceeds with first-order kinetics. NADPH (150 microM) as well as acetyl-CoA (500 microM) affords protection against inactivation, suggesting that the inhibitor is active site directed. In contrast, malonyl-CoA (500 microM) offers little protection. With chloro [1-14C]propionyl-CoA, stoichiometries of modification that approach one per enzyme protomer (240 kilodaltons) have been measured. When chloropropionyl-[3'-32P]CoA is used for inactivation, modification stoichiometries are less than 10% of the value observed in the 14C labeling experiments, suggesting that acylation of the enzyme occurs. Radioactivity remains associated with the 14C-labeled protein after performic acid oxidation, indicating that another linkage, in addition to the thio ester adduct, is formed during inactivation. Recovery of [( 14C]carboxyethyl)cysteine from digests of the inactivated enzyme indicates that alkylation of an active site cysteine occurs. The cysteamine sulfhydryl of the acyl carrier peptide is clearly not the site of modification. Loss of overall enzyme activity is tightly linked to decreases in the ketoacyl synthase partial reaction. This observation, coupled with the differential protection measured with acetyl-CoA and malonyl-CoA, suggests that the reagent modifies a residue at the active site involved in condensation. While inactivated enzyme shows good ketoacyl reductase activity when S-(acetoacetyl)-N-acetylcysteamine is used as a substrate, only poor activity for this partial reaction is measured when acetoacetyl-CoA is the substrate. This implies that the function of the acyl carrier peptide (ACP) is impaired during the inactivation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Canine renal Na,K-ATPase was treated with ATP dialdehyde, "oxATP" (20 microM), as described by G. Ponzio, B. Rossi, and M. Lazdunski (1983, J. Biol. Chem. 258, 8201-8205). In this system, a by-product, formaldehyde, was the inactivator. We modified the system to minimize such inhibition and to speed up the reaction. oxATP itself inactivated the enzyme at a rate that was slow at first and later speeded up. We fitted a precursor-product model to the data. Labeling with [3H]oxATP indicated about three sites per alpha beta protomer at complete inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled enzyme showed radioactivity in many components, in the alpha and beta subunits and in small molecules at the tracker dye region. ATP (20 mM) prevented all labeling and inactivation. Ponzio et al. concluded that oxATP labels covalently an ATP binding site. Our experiments did not support this conclusion. Ouabain did not affect labeling. Sodium stimulated both inhibition and labeling more than potassium did, indicating a high-affinity ATP binding site, if any. But nucleotide specificity for preventing or producing inhibition did not correspond to nucleotide specificity for binding of ATP to the native enzyme. Blocking the ATP binding center with fluorescein isothiocyanate or fluorosulfonyl benzoyl adenosine had no effect on [3H]oxATP labeling. ATP also prevented [3H]oxATP labeling of bovine serum albumin or of integral-membrane proteins.  相似文献   

16.
6-Hydroxybenzofuran and phenylhydrazine are mechanism-based inhibitors of dopamine beta-hydroxylase (D beta H; EC 1.14.17.1). We report here the isolation and characterization of radiolabeled peptides obtained after inactivation of D beta H with [3H]6-hydroxybenzofuran and [14C]phenylhydrazine followed by digestion with Staphylococcus aureus V8 protease. Inactivation of D beta H with [3H]6-hydroxybenzofuran gave only one labeled peptide, whereas inactivation with [14C]phenylhydrazine gave several labeled peptides. Each inhibitor labeled a unique tyrosine in the enzyme corresponding to Tyr477 in the primary sequence of the bovine enzyme (Robertson, J. G., Desai, P. R., Kumar, A., Farrington, G. K., Fitzpatrick, P. F., and Villafranca, J. J. (1990) J. Biol. Chem. 265, 1029-1035). In addition, [14C]phenylhydrazine also labeled a unique histidine (His249) as well as several other peptides. Examination of the complete peptide profile obtained by high pressure liquid chromatography analysis also revealed the presence of a modified but nonradioactive peptide. This peptide was isolated and sequenced and was identical whether the enzyme was inactivated by 6-hydroxybenzofuran or phenylhydrazine. An arginine at position 503 was missing from the sequence cycle performed by Edman degradation of the modified peptide, but arginine was present in the identical peptide isolated from native dopamine beta-hydroxylase. These data are analyzed based on an inactivation mechanism involving formation of enzyme bound radicals (Fitzpatrick, P. F., and Villafranca, J. J. (1986) J. Biol. Chem. 261, 4510-4518) interacting with active site amino acids that may have a role in substrate binding and binding of the copper ions at the active site.  相似文献   

17.
R B Silverman  C George 《Biochemistry》1988,27(9):3285-3289
(Z)-4-Amino-2-fluorobut-2-enoic acid (1) is shown to be a mechanism-based inactivator of pig brain gamma-aminobutyric acid aminotransferase. Approximately 750 inactivator molecules are consumed prior to complete enzyme inactivation. Concurrent with enzyme inactivation is the release of 708 +/- 79 fluoride ions; transamination occurs 737 +/- 15 times per inactivation event. Inactivation of [3H]pyridoxal 5'-phosphate ([3H]PLP) reconstituted GABA aminotransferase by 1 followed by denaturation releases [3H]PMP with no radioactivity remaining attached to the protein. A similar experiment carried out with 4-amino-5-fluoropent-2-enoic acid [Silverman, R. B., Invergo, B. J., & Mathew, J. (1986) J. Med. Chem. 29, 1840-1846] as the inactivator produces no [3H]PMP; rather, another radioactive species is released. These results support an inactivation mechanism for 1 that involves normal catalytic isomerization followed by active site nucleophilic attack on the activated Michael acceptor. A general hypothesis for predicting the inactivation mechanism (Michael addition vs enamine addition) of GABA aminotransferase inactivators is proposed.  相似文献   

18.
H P Meloche  C T Monti 《Biochemistry》1975,14(16):3682-3687
The enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase of Pseudomonas saccharophila is inactivated by the substrate analog beta-bromopyruvate, which satisfies several criteria of being an active site directed reagent. The inactivation exhibits saturation kinetics, and both bromopyruvate and pyruvate (substrate) compete for free enzyme. Upon prolonged incubation, inactivation is virtually complete. The Kinact for bromopyruvate is 12 mM and the minimum inactivation half-time is 16 min with a k of 0.0433 min minus 1. Bromopyruvate is also a substrate for the enzyme in that 3(R,S)-[3-3H2]bromopyruvate is asymmetrically detritiated by the enzyme yielding 3(S)-[3-3H,H]bromopyruvate concomitant with inactivation. At various concentrations of bromopyruvate which affect the inactivation rate, the ratio of nanomoles of bromopyruvate turned over/unit of enzyme inactivated remains constant averaging 12:1, consistent with both inactivation and catalysis occurring at a single protein site, the catalytic site. The above value does not take into account a possible hydrogen isotope effect and is not thus an absolute value. The stereochemistry of bromopyruvate turnover catalyzed by this enzyme is the same as that for 2-keto-3-deoxy-6-phosphogluconate aldolase of P. putida. This fact provides the first evidence that the pyruvate-specific portions of the two active sites may have evolved from a common precursor.  相似文献   

19.
In order to identify the essential reactive amino acid residues of 5-enolpyruvylshikimate-3-phosphate synthase, the reaction of the enzyme with its substrate analogue bromopyruvate was investigated. Incubation of the enzyme with bromopyruvate resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact of 28 microM and a maximum rate constant of 0.31 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvylshikimate 3-phosphate or by the combination of shikimate 3-phosphate plus glyphosate (N-phosphonomethylglycine), an inhibitor of the enzyme. Addition of sodium [3H]borohydride to the reaction mixture had no effect on the rate of inactivation but resulted in the incorporation of 3H label to the modified enzyme. Upon 90% inactivation, approximately 1 mol of bromo[14C]pyruvate was incorporated per mole of enzyme modified in the absence or presence of sodium borohydride. When the enzyme was incubated with bromopyruvate in the presence of sodium [3H]borohydride, approximately 1 mol of 3H label was found to be associated per mole of the modified enzyme. Tryptic digestion of these labeled proteins followed by reverse phase chromatographic separation resulted in the isolation of three radioactive peptides. Analyses of these three peptides indicated that bromopyruvate inactivated the enzyme by modifying Cys-408 and Lys-411, which are conserved in all enzyme sequences studied to date.  相似文献   

20.
L A Witters  J M McDermott 《Biochemistry》1986,25(22):7216-7220
Because of certain similarities between acetyl-CoA carboxylase (ACC) and tubulin, and the recent demonstration of the ADP-ribosylation of tubulin by cholera toxin, we have investigated a potential role for ADP-ribosylation in the regulation of ACC activity. Incubation of purified rat liver ACC with cholera toxin in the presence of millimolar concentrations of [adenylate-32P]NAD results in a time-dependent incorporation of ADP-ribose into ACC of greater than 2 mol/mol of enzyme subunit, accompanied by a marked inactivation of enzyme activity. This effect is not mimicked by pertussis toxin, ADP-ribose, or ribose 5-phosphate. Incubation of labeled ACC with snake venom phosphodiesterase and alkaline hydrolysis release 32P-products tentatively identified by high-performance liquid chromatography as 5'-[32P]AMP and [32P]ADP-ribose, respectively. These data are consistent with a mono-ADP-ribosylation of ACC catalyzed by cholera toxin. Phosphodiesterase treatment of inactivated ACC partially restores enzyme activity. The effects of ADP-ribosylation of ACC are expressed both as a decrease in the enzyme Vmax and as an increase in the apparent Ka for citrate. These results suggest that ACC might be a substrate for endogenous ADP-ribosyltransferases and that this covalent modification could be an important regulatory mechanism for the modulation of fatty acid synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号