首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G I Birnbaum  P Lassota  D Shugar 《Biochemistry》1984,23(21):5048-5053
The three-dimensional structure of 8-chloroguanosine dihydrate was determined by X-ray crystallography. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), and the cell dimensions are a = 4.871 (1) A, b = 12.040 (1) A, and c = 24.506 (1) A. The structure was determined by direct methods, and least-squares refinement, which included all hydrogen atoms, converged at R = 0.031 for 1599 observed reflections. The conformation about the glycosidic bond is syn with chi CN = -131.1 degrees. The ribose ring has a C(2')-endo/C-(1')-exo (2T1) pucker, and the gauche+ conformation of the -CH2OH side chain is stabilized by an intramolecular O-(5')-H...N(3) hydrogen bond. Conformational analysis by means of 1H NMR spectroscopy showed that, in dimethyl sulfoxide, the sugar ring exhibits a marked preference for the C(2')-endo conformation (approximately 70%) and a conformation about the glycosidic bond predominantly syn (approximately 90%), hence similar to that in the solid state. However, the conformation of the exocyclic 5'-CH2OH group exhibits only a moderate preference for the gauche+ rotamer (approximately 40%), presumably due to the inability to form the intramolecular hydrogen bond to N(3) in a polar medium. The conformational features are examined in relation to the behavior of 8-substituted purine nucleosides in several enzymatic systems, with due account taken of the steric bulk and electronegativities of the 8-substituents.  相似文献   

2.
The in vitro assembly process for forming nucleoprotein complexes containing linear retrovirus-like DNA and integrase (IN) was investigated. Solution conditions that allowed avian myeloblastosis virus IN to efficiently pair two separate linear DNA fragments (each 487 bp in length) containing 3' OH recessed long terminal repeat termini were established. Pairing of the viral termini by IN during preincubation on ice permitted these nucleoprotein complexes to catalyze the concerted insertion of the two termini into a circular DNA target (full-site reaction), mimicking the in vivo reaction. The three major solution determinants were high concentrations of NaCl (0.33 M), 1,4-dioxane, and polyethylene glycol. The aprotic solvent dioxane (15%) was significantly better (sixfold) than 15% dimethyl sulfoxide for forming complexes capable of full-site rather than half-site integration events. Half-site reactions by IN involved the insertion of a single donor terminus into circular pGEM. Although NaCl was essential for the efficient promotion of the concerted integration reaction, dioxane was necessary to prevent half-site reactions from occurring at high NaCl concentrations. Under optimal solution conditions, the concerted integration reaction was directly proportional to a sixfold range of IN. The complexes appeared not to turn over, and few half-site donor-donor molecules were produced. In the presence of 0.15 or 0.35 M NaCl, dioxane prevented efficient 3' OH trimming of a blunt-ended donor by IN, suggesting that the complexes formed by IN with blunt-ended donors were different from those formed with donors containing 3' OH recessed termini for strand transfer. The results suggest that IN alone was capable of protein-protein and protein-DNA interactions that efficiently promote the in vitro concerted integration reaction.  相似文献   

3.
K Feldmann  E J Helmreich 《Biochemistry》1976,15(11):2394-2401
1 H NMR spectra of the 3-0-methylpyridoxal 5'-phosphate-n-butylamine reaction product indicated that this analogue forms a Schiff base in aprotic solvent. The uv spectral properties of 3-0-methylpyridoxal-5'-phosphate phosphorylase b correspond to those of the n-butylamine Schiff base derivative in dimethyl sulfoxide. On the basis of that and auxiliary uv and 1H NMR spectra of pyridoxal and pyridoxal 5'-phosphate and the corresponding Schiff base derivatives we have verified that pyridoxal 5' -phosphate is also bound as a Schiff base to phosphorylase and not as an aldamine. Since 3-0-methylpyridoxal-5'-phosphate phosphorylase is active, a proton shuttle between the 3-hydroxyl group and the pyridine nitrogen is excluded. This directs attention to the 5' -phosphate group of the cofactor as a candidate for a catalytic function. 31P NMR spectra of pyridoxal 5' -phosphate in phosphorylase b indicated that deprotonation of the 5' -phosphate group was unresponsive to external pH. Interaction of phosphorylase b with adenosine 5' -monophosphate, the allosteric effector required activity, and arsenate, which substitutes for phosphate as substrate, triggered a conformational change which resulted in deprotonation of the 5' -phosphate group of pyridoxal 5' at pH 7.6. It now behaved like in the pyridoxal-phosphate-epsilon-aminocaproate Schiff base in aqueous buffer, where the diionized form is dominant at this pH. Differences of line widths of the adenosine 5' -monophosphate signal point to different life times of the allosteric effector- enzyme complexes in the presence and absence of substrate (arsenate).  相似文献   

4.
It was found by 1H and 13C NMR spectroscopy that the Schiff base, 2-deoxy-2-(2-hydroxybenzaldimino)-D-glucopyranose exhibits enol-imine-keto-amine and anomeric equilibria in methanolic, and in dimethyl sulfoxide solutions. The reaction of the Schiff base with nickel acetate gave the bidentate, mononuclear Ni(II) complex that was characterized by spectroscopic methods and by cyclic voltammetry. The coordination of the Schiff base to the metal is through the enol-imine tautomeric form, and the anomeric equilibrium remains in dimethyl sulfoxide solutions. This complex was also obtained by reaction of D-glucosamine with Ni(II) salicylaldehydate. The same reaction was employed for the synthesis of bis-N-[2-deoxy-D-galactopyranosyl-2-(2-hydroxybenzaldiminate)]Ni(II). The small paramagnetic shifts of the 1H NMR resonances of the complexes suggest that paramagnetic species are present in low proportions.  相似文献   

5.
Extensive studies using one- and two-dimensional 1H NMR at 500 MHz revealed that the oligonucleotide d(CGCCGCAGC) in solution at 5 degrees C forms a double helix under conditions of high salt (500 mM in NaCl, 1 mM sodium phosphate), low pH (pH 4.5), and high DNA concentration (4 mM in duplex). The presence of very strong nuclear Overhauser effects (NOEs) from base H8/H6 to sugar H2',H2" and the absence of NOE from base H8/H6 to sugar H3' suggested that the oligomer under these solution conditions forms a right-handed B-DNA double helix. The following lines of experimental evidence were used to conclude that C4 and A7 form an integral part of the duplex: (i) the presence of a NOESY cross-peak involving H8 of A7 and H8 of G8, (ii) the presence of a two-dimensional NOE (NOESY) cross-peak between H6 of C3 and H6 of C4, (iii) base protons belonging to C4 and A7 forming a part of the H8/H6---H1' cross-connectivity route, and (iv) the pattern of H8/H6---H2',H2" NOESY cross-connectivity based upon a B-DNA model requiring that both C4 and A7 form an integral part of the duplex. The possibility of an A-C pair involving H bonds was also examined. Two possible structural models of the duplex at pH 4.5 are proposed: in one model A-C pairing involves two H bonds, and in the other A-C pairing involves a single H bond.  相似文献   

6.
Vibrational circular dichroism (VCD) spectroscopy and simultaneous IR absorption measurements are applied to study the interaction of natural calf thymus DNA with Cu2+ ions at room temperature in a Cu2+ concentration range of 0-0.4M (a Cu2+/phosphate molar ratio [Cu]/[P] of 0-0.7). In some important instances, VCD provides more detailed insights than previous IR investigations whereas in several others it leads to the same interpretations. The Cu2+ ions bind to phosphate groups at a low metal concentration. Upon increasing the ion concentration, chelates are formed in which Cu2+ binds to the N7 of guanine (G) and a phosphate group. Detectable only by VCD, significant distortion of most guanine-cytosine (GC) base pairs occurs at a [Cu]/[P] ratio of 0.5 with only a minor affect on adenine-thymine (AT) base pairs, which favors a "sandwich" complex in which a Cu2+ ion is inserted between two adjacent guanines in a GpG sequence. The AT base pairs become significantly distorted when the metal concentration is increased to 0.7 [Cu]/[P]. A number of GC base pairs, which are possibly involved in sandwich complexes, remain stacked and paired even at 0.7 [Cu]/[P], preventing complete strand separation. The DNA secondary structure changes considerably from the standard B-form geometry at a [Cu]/[P] ratio of 0.4 and higher. A further transition to some intermediate conformation that is inconsistent with either the A- or Z-form or a completely denatured state is suggested in agreement with other works. In general, VCD proves to be a reliable indicator of the 3-dimensional structure of the DNA-metal ion complexes, which reveals structural details that cannot be deduced from the IR absorption spectra alone.  相似文献   

7.
The role of superoxide and hydroxyl radicals in gamma-radiation-killing of Escherichia coli K12 was studied in aerated suspensions supplemented with formate, phosphate, superoxide dismutase, catalase and saturated with nitrous oxide. Nitrous oxide, which converts e-aq to .OH, caused decreased radiosensitivity. On the other hand, formate, which results in conversion of .OH to .O2-, resulted in an increased radiosensitivity. The results implicated .O2- as a major cause of radiation-mediated cell-killing. The addition of the enzymes, superoxide dismutase or catalase to the E. coli suspensions prior to and during irradiation had no effect on cell survival, indicating that the biologically significant site of generation and action of .O2- is an intracellular one. Further studies were undertaken to examine the role of superoxide in DNA damage. The release of thymine from the DNA base, thymidine was studied as a result of gamma-irradiation and of chemically generated superoxide (using KO2 in dimethyl sulfoxide). Thymine was identified by HPLC and mass spectrometry. C-13 NMR analysis of the reaction mixture of thymidine with KO2 in dimethyl sulfoxide provided evidence for attack of .O2 at the ribosyl Cl' atom.  相似文献   

8.
M Chiesi  M Zurini  E Carafoli 《Biochemistry》1984,23(12):2595-2600
The Ca2+-transporting ATPase of erythrocytes was isolated by calmodulin affinity chromatography. The backward reaction of the ATPase was investigated. The phosphorylation of the solubilized enzyme by Pi required Mg and was inhibited by Ca and vanadate in the micromolar concentration range. Significant amounts of phosphoenzyme could be obtained only in a medium containing high dimethyl sulfoxide concentrations (greater than 25%) in order to diminish water activity at the phosphorylation site. The phosphoenzyme formed in this way could not phosphorylate ADP. However, upon addition of Ca2+ ions and dilution of dimethyl sulfoxide in the phosphorylated preparation (water activity jump), a highly reactive phosphoenzyme species was obtained which could transfer phosphate in nearly stoichiometric amounts to ADP to form ATP.  相似文献   

9.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

10.
The rates of hydrolysis of acetyl phosphate in the presence of 0.1 M NaOH and of ATP in the presence of either 1 M HCl or 1 M NaOH were measured at different temperatures and in the presence of different concentrations of the organic solvents dimethyl sulfoxide or ethylene glycol. Under all conditions tested, there was a progressive increase in the rate constant of hydrolysis of both phosphate compounds as the water activity of the medium was decreased by the addition of organic solvents. At 25 degrees C, substitution of 70% of the water of the medium by dimethyl sulfoxide promoted an increase of two orders of magnitude in the rate constant of acetyl phosphate hydrolysis. In the presence of 80% and 90% dimethyl sulfoxide the rate of acetyl phosphate hydrolysis increased by more than two orders of magnitude and was so fast that it could not be measured with the method used. The effect of organic solvents on the rate of ATP hydrolysis was less pronounced than that observed for acetyl phosphate hydrolysis. At 30 degrees C, substitution of 90% of water by an organic solvent promoted a 4-6-fold increase of the rate of ATP hydrolysis. Acceleration of either acetyl phosphate or ATP hydrolysis rates was promoted by a decrease in both activation energies (Ea) and in entropies of activation delta S. The data obtained are discussed with reference to the mechanism of catalysis of enzymes involved in energy transduction such as the Ca2+-ATPase of sarcoplasmic reticulum and the F1-ATPase of mitochondria.  相似文献   

11.
A kinetic study has been made of the RNase-T2-catalyzed transphosphorylation of two adenine nucleotides, adenylyl(3'-5')uridine and adenosine 3'-(1-naphthyl)phosphate. Rates were measured at pH values ranging from 2.6 to 8.2. The observed shape of the plot of log kcat against pH for both the natural and the synthetic substrate suggests that there exist two parallel rate-determining pathways. Two pH-independent rate constants and three ionization constants of the enzyme-substrate complexes were obtained by nonlinear iterative least-squares analysis. Detailed interpretation of the pH profiles was carried out and it is proposed that carboxylate anion is likely to deprotonate O-2' at 4 less than pH less than 6, but at pH greater than 6 an alternative general base would play this role more effectively than the carboxylate group. Another base in its protonated cationic form is responsible for the general acid catalysis.  相似文献   

12.
7-Methylguanosine, one of the biologically important minor nucleosides, could be crystallized as a complex of its zwitterionic form and its iodide, and the crystal structure was determined by the X-ray diffraction method. The crystals belong to the triclinic space group P1 with the unit cell dimensions: a = 7.678(1), b = 18.094(3), and c = 5.711(1) A, alpha = 79.32(1), beta = 80.14(1) and gamma = 76.90(1) degrees. The structure was solved by the heavy atom method and refined by the least-squares method to give a final R index of 0.075. The novel reverse Watson-Crick type base pairing observed between a positively charged molecule and a deprotonated one indicates that the deprotonation at the N(1) position promoted by the alkylation at the N(7) position may interrupt the formation of the normal Watson-Crick type GC base pair. The conformations about the glycosidic bond and the sugar puckering are quite different between the two molecules: the former has anti and C(4')-exo,C(3')-endo and the latter syn and C(1')-exo-C(2')-endo.  相似文献   

13.
F Inagaki  I Shimada  T Miyazawa 《Biochemistry》1985,24(4):1013-1020
The binding modes of inhibitors to ribonuclease T1 (RNase T1) were studied by the analyses of 270-MHz proton NMR spectra. The chemical shift changes upon binding of phosphate, guanosine, 2'-GMP, 3'-GMP, 5'-GMP, and guanosine 3',5'-bis(phosphate) were observed as high field shifted methyl proton resonances of RNase T1. One methyl resonance was shifted upon binding of phosphate and guanosine nucleotides but not upon binding of guanosine. Four other methyl resonances were shifted upon binding of guanosine and guanosine nucleotides but not upon binding of phosphate. From the analyses of nuclear Overhauser effects for the pair of H8 and H1' protons, together with the vicinal coupling constants for the pair of H1' and H2' protons, the conformation of the guanosine moiety as bound to RNase T1 is found to be C3'-endo-syn for 2'-GMP and 3'-GMP and C3'-endo-anti for 5'-GMP and guanosine 3',5'-bis(phosphate). These observations suggest that RNase T1 probably has specific binding sites for the guanine base and 3'-phosphate group (P1 site) but not for the 5'-phosphate group (PO site) or the ribose ring. The weak binding of guanosine 3',5'-bis(phosphate) and 5'-GMP to RNase T1 is achieved by taking the anti form about the glycosyl bond. The productive binding to RNase T1 probably requires the syn form of the guanosine moiety of RNA substrates.  相似文献   

14.
Two new complexes of Ru(III) with purine base derivatives, [mer-RuCl(3)(acv)(DMSO-S)(C(2)H(5)OH)].C(2)H(5)OH (1) (acv=acyclovir, DMSO=dimethyl sulfoxide) and [trans-RuCl(4)(guaH)(DMSO-S)].2H(2)O (2) (guaH=protonated molecule of guanine), were prepared from the same Ru(III) precursor, [trans-RuCl(4)(DMSO-S)(2)](-), by substitution of one DMSO-S. Coordination of acv induced also replacement of one chloride by an ethanol molecule. This reactivity difference was explained by striking contrasts in the hydrogen bonding schemes of the two complexes, evidenced in their X-ray crystal structures. In 1 the guanine derivative acyclovir is coordinated to ruthenium through the N(7) atom, while in 2 the protonated guanine molecule is bound through the N(9) atom. Both complexes were also characterized by various physico-chemical methods in the solid state and in the solution. In vitro, the biological activity of 2 and of the previously described complexes [mer-RuCl(3)(acv)(DMSO-S)(CH(3)OH)].0.5CH(3)OH (3) and [mer-RuCl(3)(acv)(DMSO-S)(H(2)O)].H(2)O (4) on tumour cells appear to be very similar to that of NAMI-A (NAMI-A=[ImH][trans-RuCl(4)(DMSO-S)Im]). All compounds are only weakly active on tumour cell proliferation but show an interesting proadhesive effect that suggest possible activity on tumour malignancy.  相似文献   

15.
Copper-induced oxidative damage is generally attributed to the formation of the highly reactive hydroxyl radical by a mechanism analogous to the Haber-Weiss cycle for Fe(II) and H2O2. In the present work, the reaction between the Cu(I) ion and H2O2 is studied using the EPR spin-trapping technique. The hydroxyl radical adduct was observed when Cu(I), dissolved in acetonitrile under N2, was added to pH 7.4 phosphate buffer containing 100 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Formation of the hydroxyl radical was dependent on the presence of O2 and subsequent formation of H2O2. The kscav/kDMPO ratios obtained were below those expected for a mechanism involving free hydroxyl radical and reflect the interference of nucleophilic addition of H2O to DMPO to form the DMPO/.OH adduct in the presence of nonchelated copper ion. Addition of ethanol or dimethyl sulfoxide to the reaction suggests that a high-valent metal intermediate, possibly Cu(III), was also formed. Spin trapping of hydroxyl radical was almost completely inhibited upon addition of Cu(I) to a solution of either nitrilotriacetate or histidine, even though the copper was fully oxidized to Cu(II) and H2O2 was formed. Bathocuproinedisulfonate, thiourea, and reduced glutathione all stabilized the Cu(I) ion toward oxidation by O2. Upon addition of H2O2, the Cu(I) in all three complexes was oxidized to varying degrees; however, only the thiourea complex was fully oxidized within 2 min of reaction and produced detectable hydroxyl radicals. No radicals were detected from the bathocuproinedisulfonate or glutathione complexes. Overall, these results suggest that the deleterious effects of copper ions in vivo are diminished by biochemical chelators, especially glutathione, which probably has a major role in moderating the toxicological effects of copper.  相似文献   

16.
The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2'endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and riboguanosine residues in nucleosides and nucleotides prefer the syn-C2'endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5'-H and the N3 of the base and, a few syn-C3'endo conformations are also observed. Evidence is presented for the occurrence of the C3'endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4'-C5' and P-O5' bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3'endo conformation and the distorted backbone sugar-phosphate bonds (C4'-C5' and P-O5') as in the earlier right-handed case.  相似文献   

17.
Golden hamster embryo cells were exposed to 137Cs gamma rays in the presence or absence of dimethyl sulfoxide at both 310 and 77 K. Dimethyl sulfoxide gave significant protection against cell killing at both 310 and 77 K. The extent of radioprotection with 1.28 M dimethyl sulfoxide at 77 K was 85-89% of the lethal effects observed in the absence of dimethyl sulfoxide at 310 K; the dose-modifying factor was 5.7. Dimethyl sulfoxide also exerted protected against gamma-ray-induced DNA single-strand breaks and chromosomal aberrations with a maximum protection of 80-100% at a dimethyl sulfoxide concentration of 1.28 M at 77 K. At 77 K, H atoms, ion holes, and electrons can migrate through frozen cells but OH radicals cannot diffuse. Thus the protective effects of dimethyl sulfoxide against cell killing, chromosomal aberrations, and DNA single-strand breaks at 77 K may be due to the scavenging of H atoms or other ions, rather than OH radicals.  相似文献   

18.
Regulation of erythroid differentiation by vitamin D3 derivatives was examined in Friend erythroleukemia cells. After Friend cells were cultured for 5 days with 1.5% dimethyl sulfoxide (DMSO), as much as 70% of the cells became benzidine-positive and the hemoglobin content increased in parallel with the increase of benzidine-positive cells. The DMSO-induced erythroid differentiation was markedly inhibited by concurrent addition of the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent in inhibiting DMSO-induced erythroid differentiation. 1 alpha,25(OH)2D3 alone was totally ineffective in both cell growth and erythroid differentiation. These results together with our previous reports indicate that 1 alpha,25(OH)2D3 is somehow involved not only in myeloid differentiation, but also in erythroid differentiation.  相似文献   

19.
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or aikylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA iigase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEI, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and iigases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organeile targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.  相似文献   

20.
During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to selectively stabilize the "activated" phosphate conformation in order to promote cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号