首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific antiserum to rat liver spermidine/spermine N1-acetyltransferase was used to study the induction of this protein. The antiserum had no effect on the spermidine acetylating capacity of crude nuclear extracts and very little effect on the activity present in crude cytosolic extracts from control rat tissues indicating that most of this activity is not due to spermidine/spermine N1-acetyltransferase. Treatment of rats with carbon tetrachloride, spermidine, thioacetamide, or methylglyoxal bis(guanylhydrazone) produced a substantial increase in the spermidine acetylating capacity of rat liver cytosolic extracts which was exclusively due to an increase in the immunoprecipitable spermidine/spermine N1-acetyltransferase protein. Exact measurement of the extent of this increase was not possible because the basal amount was too low to determine precisely but the amount of this enzyme increased about 250-fold with 6 h of treatment with carbon tetrachloride, about 25-fold at 6 h after spermidine, about 23-fold at 24 h after thioacetamide and up to 300-fold at 24 h after methylglyoxal bis(guanylhydrazone). Treatment of rats with spermidine also increased spermidine/spermine N1-acetyltransferase in other tissues including lung, kidney, and pancreas. The spermidine/spermine N1-acetyltransferase protein was found to turn over very rapidly with a half-life of about 15 min in thioacetamide-treated rats and 180 min after carbon tetrachloride.  相似文献   

2.
Choline kinase was purified from rat kidney to apparent homogeneity with respect to both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme showed a minimum molecular weight of 42,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On the other hand, the molecular size of 75,000-80,000 was estimated through Sephadex G-150 gel filtration, indicating that the enzyme in rat kidney exists most likely in a dimeric form. Specific antibody was raised in rabbit against the highly purified rat kidney choline kinase protein, then immunochemical cross-reactivity was investigated between rabbit antiserum and choline kinase preparations from various rat tissues. The antiserum inhibited choline kinase activity almost completely in the crude preparation not only from kidney but also from lung, intestine, and normal untreated liver cytosol, but it could inhibit only partially the activity from either 3-methylcholanthrene- or carbon tetrachloride-induced rat liver cytosol. The overall results demonstrated that, although choline kinase protein appears to exist in multiple forms in rat tissues, most of them are immunochemically identical, and that either 3-methylcholanthrene- or carbon tetrachloride-inducible form(s) of choline kinase in rat liver could be quite different from a form or forms existing in normal untreated rat liver cytosol.  相似文献   

3.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

4.
C1-tetrahydrofolate synthase (C1-THF synthase), a eukaryotic trifunctional enzyme, catalyzes three sequential folate-mediated one-carbon interconversions. These three reactions supply the activated one-carbon units required in the metabolism of purines, thymidylate, and several amino acids. In order to study the regulation of C1-THF synthase expression in mammals, we have purified the enzyme to homogeneity from rat liver, raised polyclonal antisera to it in rabbits, and developed a sensitive solid-phase immunoassay for the enzyme. The enzyme was purified approximately 600-fold to a specific activity of 24.6 U/mg protein based on 10-formyl-THF synthetase activity. Western blot analysis indicated that the antisera is specific for one protein in crude liver extracts which comigrates with purified C1-THF synthase. Using the solid-phase immunoassay, as little as 200 pg of immunoreacting protein can be detected in tissue homogenates. Several rat tissues were examined for the three C1-THF synthase enzymatic activities and immunoreactive protein. The results indicated that the level of C1-THF synthase is regulated in a tissue-specific manner. Enzyme assays revealed that certain tissues differ by more than 100-fold in enzyme activity, with liver and kidney containing the highest levels, and lung and muscle the lowest. However, immunoassay of these same tissues indicated only a 10-fold difference in C1-THF synthase concentration. This apparent masking of enzyme activity was observed in all tissues, but to varying degrees. These results emphasize the advantages of an immunoassay in studying the regulation of C1-THF synthase.  相似文献   

5.
One of the major proteins secreted from the rat seminal vesicle epithelium, namely SV-IV, was shown to act in vitro as acyl donor and acceptor substrate for transglutaminase from both guinea pig liver and rat anterior prostate secretory fluid. Electrophoretic and chromatographic experiments indicated that the enzyme catalyzed the formation of multiple modified forms of SV-IV. In the absence of small Mr amines, transglutaminase was able to produce at least six different molecular forms of the protein, half of which possessed an Mr higher than that of native SV-IV. These findings suggested that a variable number of intermolecular, and perhaps intramolecular, crosslinks were formed between one or both glutamine residues and one or more lysine residues occurring in the SV-IV polypeptide chain. In addition, at least three modified forms of the protein were produced by transglutaminase in the presence of high concentrations of spermidine, thus indicating the formation of different (gamma-glutamyl)polyamine derivatives of SV-IV. Rabbit uteroglobin and rat anterior prostate secretory protein(s) were also shown to be able to covalently bind spermidine in the presence of the enzyme. The possible biological significance of transglutaminase-mediated modifications of SV-IV, as well as of other proteins occurring in the mammal seminal fluid, are discussed.  相似文献   

6.
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively.  相似文献   

7.
A low-Km cyclic nucleotide phosphodiesterase solubilised from rat liver membranes by mild proteolysis with chymotrypsin has been purified to apparent homogeneity. The purification included chromatography on cellulose phosphate, Ecteola-cellulose, hydroxyapatite, a theophylline affinity matrix and HPLC on a DEAE-substituted column. The purified enzyme has linear kinetic plots with a Km of 0.24 microM and a Vmax of 6.2 mumol mg-1 min-1 with cyclic AMP as a substrate. It also hydrolyses cyclic GMP with a Km of 0.17 microM and a Vmax which is about a third of that with cyclic AMP. Cyclic GMP is also a competitive inhibitor of cyclic AMP hydrolysis with a Ki of 0.18 microM. The proteolytically solubilised enzyme has a subunit molecular mass of 73 kDa by SDS gel electrophoresis and of 130 kDa by HPLC size-exclusion chromatography, suggesting that it exists as a dimer. A partially purified preparation of this enzyme was used to raise antiserum in a sheep. The antiserum immunoprecipitated activity from liver and adipose tissue of rat and mouse. It had little activity against phosphodiesterase from other rat tissues or other species. Insulin-activated phosphodiesterase from both adipocytes and hepatocytes was immunoprecipitated by the antiserum suggesting that the purified enzyme was an insulin-sensitive phosphodiesterase.  相似文献   

8.
Antiserum against mouse liver plasma membranes was used to investigate the properties and distribution of the surface membrane enzyme 5′ nucleotidase.The antiserum inhibited 5′ nucleotidase but had no effect on alkaline phosphodiesterase, nucleotide pyrophosphatase, or insulin-binding activity.5′ Nucleotidase was purified from mouse liver plasma membranes and the purified enzyme was shown to be inhibited by the antiserum. The membrane-bound and the purified enzyme were both inhibited in a noncompetitive manner.The reaction of the antiserum with 5′ nucleotidase activity of mouse liver plasma membrane “light” and “heavy” subfractions, and of rat liver and pig lymphocyte surface-membrane fractions was investigated. In each case the enzyme was inhibited by the antiserum.Since a protein must be partially exposed on the membrane surface in order to react with its antibody, the results are discussed in terms of the disposition of 5′ nucleotidase within the membrane.  相似文献   

9.
The HP0832 (speE) gene of Helicobacter pylori strain 26695 codes for a putative spermidine synthase, which belongs to the polyamine biosynthetic pathway. Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), which serves as an aminopropyl donor. The deduced amino acid sequence of the HP0832 gene shares less than 20% sequence identity with most spermidine synthases from mammalian cells, plants and other bacteria. In this study, the HP0832 open reading frame (786 bp) was cloned into the pQE30 vector and overexpressed in Escherichia coli strain SG13009. The resulting N-terminally 6xHis-tagged HP0832 protein (31.9 kDa) was purified by Ni-NTA affinity chromatography at a yield of 15 mg/L of bacteria culture. Spermidine synthase activity of the recombinant protein was confirmed by the appearance of spermidine after incubating the enzyme with putrescine and dcSAM. Substrate specificity studies have shown that spermidine could not replace putrescine as the aminopropyl acceptor. Endogenous spermidine synthase of H. pylori was detected with an antiserum raised against the recombinant HP0832 protein. H. pylori strain 26695 contains putrescine and spermidine at a molar ratio of 1:3, but no detectable spermine or norspermidine was observed, suggesting that the spermidine biosynthetic pathway may provide the main polyamines in H. pylori strain 26695.  相似文献   

10.
The pattern of estrone sulfate sulfohydrolase (estrogen sulfatase) development in the brain of rat, mouse and guinea pig has been established by assaying whole homogenates. Activity was measurable in each species from the fetal state to adulthood. Maximum brain content was reached at about 20 days of age in rat, 14 days in mouse and 15 days in guinea pig. A considerable decrease occurred between 14 days and adulthood in mouse and lesser decreases were seen in rat and guinea pig. The subcellular distribution of enzyme in rat and mouse brain appeared to change from the immature to the adult state. No major differences in enzyme activity occurred between the sexes at any age. Tissue concentration of enzyme in the hypothalamic-preoptic area of rat and mouse was similar to that in the remainder of the brain. In guinea pig the brain concentration was slightly lower than that of the hypothalamic-preoptic region. Sulfatase content of the pituitary was low in all 3 species but the tissue concentration was considerably higher than that of brain, particularly in rat and mouse. Apparent Km values for brain sulfatase were in the range 6-17 microM, with no striking sex difference. Apparent Km's for pituitary sulfatase of immature rat and guinea pig were similar to those for brain in the same animals but that for mouse pituitary (0.9 microM) was much lower. It is unlikely that brain or pituitary sulfatase is by itself, a major factor in making available potentially active estrogen for use during differential sex development in these species.  相似文献   

11.
Poly-A RNA extracted from the rat liver was translated in a cell-free wheat germ system and a rabbit reticulocyte lysate. The subunit of tryptophan pyrrolase precipitated by specific antiserum after synthesis in vitro has the same molecular weight as the corresponding subunit derived from the rat liver. With specific antiserum prepared against tyrosine aminotransferase, however, a radioactive protein from both the in vitro assays was precipitated with an about 5% higher molecular weight than the tyrosine aminotransferase subunit precipitated from rat liver. The immunological evidence and the comparison of the specific peptide patterns prepared by cyanogen bromide treatment showed that the in vitro product corresponds to tyrosine aminotransferase. Various concentrations of potassium or spermidine used in the wheat germ translation system did not alter the size of the enzyme subunit synthesized. The run of the tyrosine aminotransferase purified form the rat liver in the SDS-polyacrylamide gel electrophoresis was not influenced by treatment with Escherichia coli alkaline phosphatase. The possibility is discussed that the larger enzyme synthesized in vitro represents a precursor molecule which is cleaved proteolytically in vivo.  相似文献   

12.
13.
L-type glycogen synthase. Tissue distribution and electrophoretic mobility   总被引:2,自引:0,他引:2  
We previously reported (Kaslow, H.R., and Lesikar, D.D.FEBS Lett. (1984) 172, 294-298) the generation of antisera against rat skeletal muscle glycogen synthase. Using immunoblot analysis, the antisera recognized the enzyme in crude extracts from rat skeletal muscle, heart, fat, kidney, and brain, but not liver. These results suggested that there are at least two isozymes of glycogen synthase, and that most tissues contain a form similar or identical to the skeletal muscle type, referred to as "M-type" glycogen synthase. We have now used an antiserum specific for the enzyme from liver, termed "L-type" glycogen synthase, to study its distribution and electrophoretic mobility. Immunoblot analysis using this antiserum indicates that L-type glycogen synthase is found in liver, but not skeletal muscle, heart, fat, kidney, or brain. In sodium dodecyl sulfate-polyacrylamide gels of crude liver extracts prepared with protease inhibitors, rat L-type synthase was detected with electrophoretic mobility Mapp = 85,000. In contrast, the M-type enzyme in crude skeletal muscle extracts with protease inhibitors was detected with Mapp = 86,000 and 89,000. During purification of L-type synthase, apparent proteolysis can generate forms with increased electrophoretic mobility (Mapp = 75,000), still recognized by the antiserum. These M-type and L-type antisera did not recognize a protein with Mapp greater than phosphorylase. The anti-rat L-type antisera recognized glycogen synthase in blots of crude extracts of rabbit liver, but with Mapp = 88,000, a value 3,000 greater than that found for the rat liver enzyme. The anti-rat M-type antisera failed to recognize the enzyme in blots of crude extracts of rabbit muscle. Thus, in both muscle and liver, the corresponding rat and rabbit enzymes are structurally different. Because the differences described above persist after resolving these proteins by denaturing sodium dodecyl sulfate electrophoresis, these differences reside in the structure of the proteins themselves, not in some factor bound to the protein in crude extracts.  相似文献   

14.
Nitric oxide (NO) is generated from L-arginine by NO synthases. Localization of the brain enzyme has been carried out in the rat; however, despite data suggesting that NO is a major regulator of vascular and neural functions in man, there is no information about the localization of NO synthase in human tissues. Rabbit antisera to NO synthase purified from rat brain (antisera A and B) were raised, tested by Western blotting, affinity purification and enzyme immunoprecipitation assay, and used to investigate the distribution of the enzyme in a variety of human tissues by immunohistochemistry. Antisera to two synthetic peptides from cloned neural NO synthase were used to aid specificity testing. Anti-sera A and B reacted with a approximately 160-kDa protein in Western blots of human brain extracts, gave immunostaining of nerves, and precipitated enzyme activity from rat brain homogenates. Antiserum B to NO synthase also reacted with proteins of M(r) between 125 and 140 kDa in extracts of well-vascularised tissues, and immunostained vascular endothelium; the neural and vascular immunoreactivity persisted after affinity purification of antiserum B with the approximately 160 kDa protein. Endothelial staining with antiserum B was seen in respiratory tract, liver, skin and umbilicus; syncytial trophoblasts stained in the placenta. Neural staining with antiserum A and B was seen in the myenteric and submucous plexus, and in nerve fibres in smooth muscle of the gut and in many areas of the central nervous system, particularly cortex, hippocampus, hypothalamus, cerebellum, brain stem and spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Plasma membranes were purified from rat liver, muscle and sarcoma tissues and from human liver and hepatoma tissues. The plasma membranes all contained DFP-sensitive, neutral proteolytic activity. Plasma membranes from all normal tissues contained a single DFP-binding protein of apparent molecular weight 68,000. Only the plasma membranes from tumour tissue contained a plasminogen activator; the DFP-binding proteins from these membranes were more diverse than those from the normal samples. The rat liver plasma membrane proteinase was purified. It was a labile enzyme sensitive to inhibition by DFP and by calcium ions, and with a broad substrate specificity. A similar protein was the sole DFP-binding protein in rat liver microsomes. This and the properties of the enzyme suggested a possible role in the processing and secretion of newly-synthesized protein.  相似文献   

16.
Glycogen synthase from human liver was studied, and its properties were compared with those of rat liver glycogen synthase. The rat and human liver glycogen synthases were similar in their pH profile, in their kinetic constants for the substrate UDP-glucose and the activator glucose 6-phosphate, and in their elution profiles from Q-Sepharose. The apparent molecular weight of the human synthase subunit was 80,000-85,000 by gel electrophoresis, which is similar to that of the rat enzyme. In addition, antibodies to rat liver glycogen synthase recognized human liver glycogen synthase, indicating that the enzymes of these two species share antigenic determinants. However, there were significant differences between the two enzymes. In particular, the total activity of the human enzyme was higher than that of the rat. The human enzyme, purified to near homogeneity, had a specific activity of 40 U/mg protein compared with 20 U/mg protein for the rat enzyme. The active forms of the rat enzyme had greater thermal stability than those of the human enzyme, but the human enzyme was more stable on storage in various buffers. Last, amino acid analysis indicated differences between the enzymes of the two species. Since glycogen synthase is an important enzyme in liver glycogen synthesis, the characterization of this enzyme in the human will help provide insight regarding human liver glycogen synthesis.  相似文献   

17.
Dramatic inhibition of trypsin activity by rat caltrin and guinea pig caltrin I was spectrophotometrically demonstrated using the artificial substrate benzoylarginyl ethyl ester. Approximately 6% and 21% of residual proteolytic activity was recorded after preincubating the enzyme with 0.22 and 0.27 microM rat caltrin and guinea pig caltrin I, respectively. Reduction and carboxymethylation of the cysteine residues abolished the inhibitor activity of both caltrin proteins. Rat caltrin and guinea pig caltrin I show structural homology with secretory trypsin/acrosin inhibitor proteins isolated from boar and human seminal plasma and mouse seminal vesicle secretion and share a fragment of 13 amino acids of almost identical sequence (DPVCGTDGH/K/ITYG/AN), which is also present in the structure of Kazal-type trypsin inhibitor proteins from different mammalian tissues. Bovine, mouse, and guinea pig caltrin II, three caltrin proteins that have no structural homology with rat caltrin or guinea pig caltrin I, lack trypsin inhibitor activity. Rat caltrin, guinea pig caltrin I, and the mouse seminal vesicle trypsin inhibitor protein P12, which also inhibits Ca(2+) uptake into epididymal spermatozoa (mouse caltrin I), bound specifically to the sperm head, on the acrosomal region, as detected by indirect immunofluorescence. They also inhibited the acrosin activity in the gelatin film assay. Caltrin I may play an important role in the control of sperm functions such as Ca(2+) influx in the acrosome reaction and activation of acrosin and other serine-proteases at the proper site and proper time to ensure successful fertilization.  相似文献   

18.
Seven different polyamine-linked Sepharose derivatives were prepared for the affinity chromatography of spermidine and spermine binding macromolecules: Spermine synthase from rat and hog brain was used as a model protein with a spermidine binding site. Comparative studies of the affinities of the enzymes for the seven matrixes suggested that two negative charges, three to four methylene groups apart, should be present at the decarboxylated S-adenosylmethionine binding site and should improve the binding of the enzyme to the Sepharose derivative. Two negative charges at the spermidine binding site would be expected to do the same. Three affinity matrixes linked with 1,17-diamino-4,9,14-triazaheptadecane, 1,21-diamino-4,9,13,18-tetraazaheneicosane, and 5-spermine carboxylic acid, respectively, had an affinity for spermine synthases higher than that of spermine-Sepharose, which has been used for the purification of spermine synthase. The first of these matrixes was used and proved to be effective for the purification.  相似文献   

19.
The following article provides evidence that cellular calcium controls the activity of glycogen synthase in all three major glycogen storage tissues; muscle, fat, and liver. Depletion of cellular calcium resulted in a moderate increase of glycogen synthase %I activities in intact mouse diaphragms, in isolated rat adipocytes, and in rat hepatocytes. The increase in %I activity of glycogen synthase was more pronounced when the uridine di-phosphoglucose concentration in the glycogen synthase assay was lowered from 4.4 mM to 0.2 mM. Calcium depletion resulted in an approximately two-fold decrease in the Ka values for glucose-6-phosphate in all three tissues. The activities of glycogen synthase also correlated well with the content of cell-associated calcium in rat hepatocytes. The glucose-6-phosphate independent activities of glycogen synthase in extracts of calcium-replete and calcium-depleted tissue approached the same value following the exposure to crude phosphoprotein phosphatase. The activities of glycogen phosphorylase decreased in calcium-depleted tissues and cells. Insulin stimulated the activity of glycogen synthase in muscle and fat in the absence of added sugar and in the absence of extracellular calcium. It is concluded that glycogen synthase is under the control of calcium in the three main glycogen storage tissues. The actions of calcium are probably mediated through the actions of calcium-sensitive protein kinase(s).  相似文献   

20.
An antiserum to rat liver catechol-O-methyltransferase (COMT) was utilized in the immunological characterization of COMT from rat kidney, brain, and choroid plexuses, in addition to rat liver. The presence of anti-COMT activity was confirmed by the direct inhibition of the activity of the enzyme from rat liver by small quantities of the antiserum and by the inhibition of the activity of the enzyme from rat brain. The specificity of the antiserum was demonstrated both by immunoelectrophoresis of rat liver COMT, and by a partial purification of rat liver COMT in which changes in COMT specific activity were correlated with the appearance of a precipitin line in double-immunodiffusion experiments. The antigenic similarity of the enzyme derived from rat liver, kidney, brain, and choroid plexuses was demonstrated by the formation of a precipitin line of identity when preparations from these four tissues were diffused against the antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号