首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of the blood brain barrier (BBB) and the vessel permeability to horseradish peroxidase (HRP) have been analyzed in the optic tectum of chick embryos developed under normal and hypoxic conditions, normal chickens, and chickens born from fertilized eggs incubated under hypoxia but kept in the open air after hatching. The development of chick embryos under a situation of chronic hypoxia was obtained by covering, a half of the shell of fertilized eggs with a thick layer of melted paraffin to obtain a reduction of the exchanges normally occurring between embryonic blood vessels and open air. In the tecta developed in normal conditions the BBB to HRP begins to form on the 14th i.d. and it is complete on the 17th i.d. The O2 deprivation, producing remarkable alterations of the neural substratum, does not affect the development of the BBB to HRP, since in chicks of 17 i.d., grown up under hypoxic conditions, the tectal microvessels are not permeable to the tracer, being it mainly confined within the vessel lumina. Nevertheless in specimens kept under hypoxia until hatching, areas of perivascular spread of the marker have been observed corresponding to the vessel wall tracts presumably damaged by the experimental conditions along which the BBB to HRP is not complete.  相似文献   

2.
Stratigenesis in the optic tectum of developing chick embryos was investigated between the 4th and the 11th day of incubation. Stratification is achieved by successive emigration of cell contigents from the proliferative layer. In the opinion of the authors the main factor which determines this very regular cell migration would be a gradient of oxygen and of metabolites. The gradient has to appear in the wall of tectum due to its typical vascular network. Experiences with induced hypoxia or with selective damage of the proliferative layer strengthen the hypotesis of an oxygen gradient playing the role of a generally active epigenetic factor in the stratigenesis of the central nervous system.  相似文献   

3.
To study the adaptative capabilities of the retinotectal system in birds, the primordium of one optic tectum from 12-somite embryos of Japanese quail was transplanted either homotopically, to replace the ablated same primordium, or heterotopically, to replace the ablated dorsal diencephalon in White Leghorn chick embryos of the same stage. The quail nucleolar marker was used to recognize the transplants. The cytoarchitecture of the tecta and the retinal projections from the eye contralateral to the graft were studied on the 17th or 18th day of incubation in the chimeric embryos by autoradiographic or horseradish peroxidase tracing methods. Morphometric analysis was applied to evaluate the percentage of the tectal surface receiving optic projections. It was observed that: (i) quail mesencephalic alar plate can develop a fully laminated optic tectum even when transplanted heterotopically; (ii) retinal ganglion cells from the chick not only recognize the tectal neurons of the quail as their specific targets in homotopic grafts, but the optic fibers deviate to innervate the heterotopically grafted tectum; (iii) in the presence of a graft, the chick retina is unable to innervate a tectal surface of similar or larger size than that of the control tectum; (iv) tectal regions devoid of optic projections, whether formed by donor or by host cells, always present an atrophic lamination; (v) the diencephalic supernumerary optic tectum competes with and prevails over the host tectum as a target for optic fiber terminals.  相似文献   

4.
The initial formation and further development of the intraneural blood vessel network in the tectum opticum of the chick from the 4th to the 14th incubation day have been analyzed and some quantitative data morphometrically recorded. Vessels have been filled by intracardial injection of India ink in vivo. As inferred from our previous investigations on the vasculogenesis of several districts of the central and peripheral nervous system in the chick embryo, also in the developing optic tectum growth and distribution pattern of the vessels seem to unfold step by step under the local influence of earlier occurring morpho-histogenetic processes of the corresponding neural substratum.  相似文献   

5.
The correlations between infraslow potential oscillations [ISPO] and EEG activity were studied in the brain hemispheres and optic lobes of chick embryos from the 15th to 21st day of incubation. 1. The ISPO of the optic lobes remained unchanged during and after peripheral optic stimulation -- not only in 17-day-old embryos (the prefunctional stage), but also in 19- and 21-day-old embryos, in which optic evoked activity in the optic tectum is already well developed. 2. The intracerebral administration of strychnine, GABA and sodium glutamate had no effect on the ISPO of the brain hemispheres in 15-day-old embryos. 3. The effect of these neurotropic drugs in 20-day-old embryos varied. Strychnine evoked concomitant activation of ISPO and the EEG, sodium glutamate simultaneously depressed both activities, while GABA inhibited EEG activity without affecting ISPO patterns. 4. These results supported our conclusion that neuronal activity plays a secondary role in the ISPO generation process in developing brain tissue.  相似文献   

6.
The vesicles and vacuoles of the endothelia, morphological expression of endocytosis and transendothelial transport, are quite absent in the mature neural endothelia. In order to study the temporal sequence of the vesicle and vacuole modifications during the blood brain barrier (bbb) setting up, the extent of these structures was morphometrically analyzed on electron micrographs of neural microvessels in the optic tectum of 8, 14, and 17 day chick embryos, fixed after an intracardial injection of the permeability marker horseradish peroxidase. During the development, endocytosis and transendothelial transport change, since a statistically significant reduction of both vesicles and vacuoles was recorded at the 17th incubation day. The temporal coincidence between decrease of endocytosis-transport processes and appearance of astrocytic endfeet close to the vessel wall, suggests that the glial cells might control, besides the tight junction formation, the expression of other properties of the bbb-provided endothelia.  相似文献   

7.
Hypoxic incubation increases vascularization in the chick chorioallantoic membrane (CAM). The effect of regional hypoxia on the vascular density of American alligator (Alligator mississippiensis) and chicken (Gallus gallus) CAMs was studied to determine if hypoxic proliferation of blood vessels is localized or global across the CAM. Eggs were incubated under normoxic conditions with a portion of the eggshell covered with non-toxic beeswax to induce external regional hypoxia. CAMs were examined under a microscope with a 'bulls eye' coverslip and a vascular density index (VDI) was determined. The hypoxic portions of the alligator CAMs were more vascular than the normoxic portions (VDI = 200.9 versus 157. 8, respectively). Presumably this response is maladaptive by causing increased blood flow to the poorly oxygenated portions, i.e. increased 'shunt'. Thus, we hypothesize increased vascularity due to hypoxic incubation is due to local release and subsequent rapid local breakdown or uptake of angiogenic factors. In contrast, the hypoxic and normoxic portions of the chick CAMs exhibited virtually no difference in VDI (VDI= 211.5 versus 217.9, respectively). We suggest the air cell and air space of the chicken eggs allows for circulation of gas in ovo, eliminating the possibility of regional internal hypoxia.  相似文献   

8.
Retinotopic analysis of the pathways of normal and aberrant retinal axons within the tectum of developing chick embryos was performed by selective labeling of retinal axons with a fluorescent dye, rhodamine-B isothiocyanate. To produce aberrant retinal axons, the presumptive optic chiasma was surgically disorganized at the 3rd day of incubation. At the 11th and 13th days of incubation, more than half of the operated embryos exhibited several aberrant retinal axons which reached ectopic parts of the tectum. The pathways of these aberrant axons within the tectum depended on the position of their initial invasion into the tectum at the diencephalotectal junction, and not on their position of origin within the retina. The aberrant retinal axons did not show any sign of correction of their pathways toward their normal sites of innervation within the tectum. As development proceeded, elimination of the aberrant retinal axons occurred. By the 16th day of incubation, almost all operated embryos lacked aberrant retinal axons and although the total number of axons often appeared reduced, a nearly normal topography of retinotectal projections was established. These findings indicate that the initial invasion of the retinal axons into the tectum is conducted predominantly by nonspecific mechanisms and, thereafter, a selective maintenance of appropriate retinal axons occurs.  相似文献   

9.
目的:探讨低氧脑水肿时血管内皮细胞生长因子(VEGF)、水通道蛋白(AQP1和AQP4)基因和蛋白表达变化,为阐明急性低氧对脑组织的损伤及低氧脑水肿的发病机制提供实验依据。方法:Wistar大鼠随机分为4个组:常氧对照组(Control)、低氧暴露4 000 m组(4 000 m)、低氧暴露6 000 m组(6 000 m)和低氧暴露8 000 m组(8 000 m),低氧组于低压舱中模拟相应海拔高度持续暴露8 h建立低氧脑水肿模型。用干-湿重法测定脑组织水含量,常规光镜观察脑组织形态学的改变;用RT-PCR法和免疫组化法检测低氧脑水肿时大鼠脑组织VEGF、AQP1和AQP4mRNA和蛋白表达的变化。结果:①干-湿重法测定表明,低氧(≥6 000 m)暴露后,大鼠脑组织水含量明显增加(P〈0.01)。②常规光镜检测结果表明,低氧暴露4 000 m时大鼠脑神经细胞、血管内皮细胞和星形胶质细胞足突轻度肿胀,组织中出现漏出液;低氧暴露6 000 m时脑血管内皮细胞和星形胶质细胞足突肿胀加重,血管与组织间隙扩大,组织中漏出液增多;低氧暴露8 000m时脑血管内皮细胞和星形胶质细胞足突重度肿胀,血管与组织间隙进一步扩大,组织中漏出液明显增多。③低氧脑水肿时,VEGF、AQP1、AQP4mRNA表达水平增高,AQP1在内皮细胞异常表达,内皮细胞VEGF和AQP1、星形胶质细胞足突AQP4蛋白质表达水平增高。结论:低氧脑水肿时,VEGF、AQP1和AQP4表达和分布的变化可能是引起血脑屏障损伤、导致低氧脑水肿的发病机制之一。  相似文献   

10.
Prolonged fetal hypoxia leads to growth restriction and can cause detrimental prenatal and postnatal alterations. The embryonic chicken is a valuable model to study the effects of prenatal hypoxia, but little is known about its long-term effects on cardiovascular regulation. We hypothesized that chicken embryos incubated under chronic hypoxia would be hypotensive due to bradycardia and βAR-mediated relaxation of the systemic and/or the chorioallantoic (CA) arteries. We investigated heart rate, blood pressure, and plasma catecholamine levels in 19-day chicken embryos (total incubation 21 days) incubated from day 0 in normoxia or hypoxia (14-15% O(2)). Additionally, we studied α-adrenoceptor (αAR)-mediated contraction, relaxation to the β-adrenoceptor (βAR) agonist isoproterenol, and relaxation to the adenylate cyclase activator forskolin in systemic (femoral) and CA arteries (by wire myography). Arterial pressure showed a trend toward hypotension in embryos incubated under chronic hypoxic conditions compared with the controls (mean arterial pressure 3.19 ± 0.18 vs. 2.59 ± 0.13 kPa, normoxia vs. hypoxia, respectively. P = 0.056), without an accompanied bradycardia and elevation in plasma norepinephrine and lactate levels. All vessels relaxed in response to βAR stimulation with isoproterenol, but the CA arteries completely lacked an αAR response. Furthermore, hypoxia increased the sensitivity of femoral arteries (but not CA arteries) to isoproterenol. Hypoxia also increased the responsiveness of femoral arteries to forskolin. In conclusion, we suggest that hypotension in chronic hypoxic chicken embryos is the consequence of elevated levels of circulating catecholamines acting in vascular beds with exclusive (CA arteries) or exacerbated (femoral arteries) βAR-mediated relaxation, and not a consequence of bradycardia.  相似文献   

11.
The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-β1 (TGF-β1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and fight ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of α-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-β1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling.  相似文献   

12.
Summary The architecture of normal and regenerating nerve fiber bundles in the optic nerve of the goldfish and the Crucian carp was compared to that of the axonal fascicles in the optic tectum of these teleost species with the use of ultrathin sections and freeze-fracture replicas. The fascicles in the optic nerve are clearly demarcated by astrocytic processes, in contrast to the fascicles in the tectum. No astrocytes could be identified in the tectum; in this region processes of astrocytes or of radial glial cells do not form channeling structures reminiscent of those in the optic nerve. Furthermore, tectal blood vessels lack complete investments of glial processes. It can be assumed that at least in lower vertebrates a framework of astrocytic processes might be important for growth of optic fibers over large distances, i.e., from the eye to the tectum, but may be dispensable in the target region itself.  相似文献   

13.
目的:探讨大鼠低氧性肺动脉高压(HPH)形成过程中SENP1在肺小动脉的动态表达变化及作用。方法:40只成年雄性Wistar大鼠随机分为5组(n=8):对照组和缺氧3 d、7 d、14 d2、1 d组,常压间断低氧复制HPH大鼠模型。测各组大鼠平均肺动脉压(mPAP)、右心室肥大指数(RVHI)、血管形态学指标;原位杂交、逆转录-聚合酶链反应(RT-PCR)检测肺内SUMO特异性蛋白酶-1(SUMO-specific proteases-1,SENP1)mRNA表达,免疫组化、Westernblot检测其蛋白质水平。结果:①缺氧7 d后,肺小动脉出现血管重塑,且mPAP明显上升;低氧14 d后,肺小动脉重塑更明显,mPAP达高峰。RVHI在低氧14 d后明显增加。②原位杂交显示,SENP1 mRNA在对照组肺小动脉壁呈阳性表达,低氧后其相对量无明显变化。RT-PCR显示肺组织SENP1 mRNA表达与原位杂交所观察到的肺小动脉壁SENP1 mRNA变化趋势一致;SENP1蛋白在对照组呈阳性表达,低氧7 d后其表达量开始呈进行性下降。Western blot显示肺组织内SENP1蛋白表达与免疫组化观察到的肺小动脉壁SENP1蛋白变化趋势一致。③SENP1蛋白与mPAP、重塑指数、RVHI均呈负相关。结论:慢性低氧诱导肺小动脉壁SENP1蛋白降解,进而可能在HPH发病过程中发挥一定的作用。  相似文献   

14.
The effect of acute hypoxia (10% O2 for 30 min) on the rate of amnion rhythmic contractions and heart rate (HR) was studied in two age groups of European pond turtle (Emys orbicularis) embryos, on days 19–27 and 37–43 of incubation (30–40 and 60–70% of the period until hatching). Under the control conditions, the two age groups of embryos did not differ from each other in either parameter. Hypoxia did not affect significantly the amnion contraction frequency but decreased the HR. The time course of the HR during hypoxia depended on the embryo age. The mean HR in the first group of embryos was 8% decreased by minutes 10–14 of hypoxia and did not change afterwards; in the second group, it was 18% decreased by minutes 3–7 and then partly or completely restored before the end of hypoxic exposure. It has been assumed that the capacity of European pond turtle embryos for restoring the HR when exposed to acute hypoxia during the second half of embryogenesis is related to the development of neurohumoral control mechanisms.  相似文献   

15.
Although chronic prenatal hypoxia is considered a major cause of persistent pulmonary hypertension of the newborn, experimental studies have failed to consistently find pulmonary hypertensive changes after chronic intrauterine hypoxia. We hypothesized that chronic prenatal hypoxia induces changes in the pulmonary vasculature of the chicken embryo. We analyzed pulmonary arterial reactivity and structure and heart morphology of chicken embryos maintained from days 6 to 19 of the 21-day incubation period under normoxic (21% O(2)) or hypoxic (15% O(2)) conditions. Hypoxia increased mortality (0.46 vs. 0.14; P < 0.01) and reduced the body mass of the surviving 19-day embryos (22.4 +/- 0.5 vs. 26.6 +/- 0.7 g; P < 0.01). A decrease in the response of the pulmonary artery to KCl was observed in the 19-day hypoxic embryos. The contractile responses to endothelin-1, the thromboxane A(2) mimetic U-46619, norepinephrine, and electrical-field stimulation were also reduced in a proportion similar to that observed for KCl-induced contractions. In contrast, no hypoxia-induced decrease of response to vasoconstrictors was observed in externally pipped 21-day embryos (incubated under normoxia for the last 2 days). Relaxations induced by ACh, sodium nitroprusside, or forskolin were unaffected by chronic hypoxia in the pulmonary artery, but femoral artery segments of 19-day hypoxic embryos were significantly less sensitive to ACh than arteries of control embryos [pD(2) (= -log EC(50)): 6.51 +/- 0.1 vs. 7.05 +/- 0.1, P < 0.01]. Pulmonary vessel density, percent wall area, and periarterial sympathetic nerve density were not different between control and hypoxic embryos. In contrast, hypoxic hearts showed an increase in right and left ventricular wall area and thickness. We conclude that, in the chicken embryo, chronic moderate hypoxia during incubation transiently reduced pulmonary arterial contractile reactivity, impaired endothelium-dependent relaxation of femoral but not pulmonary arteries, and induced biventricular cardiac hypertrophy.  相似文献   

16.
Hypoxia during embryogenesis may induce changes in the development of some physiological regulatory systems, thereby causing permanent phenotypic changes in the embryo. Various levels of hypoxia at different time points during embryogenesis were found to affect both anatomical and physiological morphogenesis. These changes and adaptations depended on the timing, intensity, and duration of the hypoxic exposure and, moreover, were regulated by differential expression of developmentally important genes, mostly expressed in a stage- and time-dependent manner. Eggs incubated in a 17%-oxygen atmosphere for 12h/d from E5 through E12 exhibited a clear and significant increase in the vascular area of the chorioallantoic membrane (CAM); an increase that was already significant within 12h after the end of the 1st hypoxic exposures (E6). We used the combination of the genes, β-actin, RPLP0 and HPRT as a reference for gene expression profiling, in studying the expression levels of hypoxia-inducible factor 1-alpha (HIF1α), vascular endothelial growth factor alpha-2 (VEGF α 2), vascular endothelial growth factor receptor 2 (KDR), matrix metalloproteinase-2 (MMP2), and fibroblast growth factor 2 (FGF2), under normal and hypoxic conditions. In general, expression of all five investigated genes throughout the embryonic day of development had similar patterns of hypoxia-induced alterations. In E5.5 embryos, expression of HIF1α, MMP2, VEGFα2, and KDR was significantly higher in hypoxic embryos than in controls. In E6 embryos expression of HIF1α, VEGFα2, and FGF2 was significantly higher in hypoxic embryos than in controls. From E6.5 onward expression levels of the examined genes did not show any differences between hypoxic and control embryos. It can be concluded that in this experimental model, exposing broiler embryos to 17% O(2) from E5 to E7 induced significant angiogenesis, as expressed by the above genes. Further studies to examine whether this early exposure to hypoxic condition affects the chick's ability to withstand a post-hatch hypoxic environment is still required.  相似文献   

17.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

18.
Effects of hypoxia or hyperoxia on the lung of the chick embryo   总被引:1,自引:0,他引:1  
Newborn mammals in chronic hypoxia or hyperoxia experience, respectively, an increase or decrease in lung weight:body weight ratios, possibly because of the mechanical effect on the lung accompanying the ventilatory response. Because the avian lung does not expand or contract with the breathing cycle, we asked whether or not qualitatively similar changes could be observed in the lung of chick embryos incubated in hypoxic or hyperoxic conditions. Hypoxic embryos (10% O2, days 14-18) were smaller than controls incubated in normoxia, with higher hematocrit values and larger lung weight:body weight ratios (both wet and dry). Both the total pulmonary DNA (reflecting the cellular component) and the DNA concentration were decreased in hypoxia. Hyperoxic embryos (50% O2, days 7-18 or days 14-18) had lower hematocrit values and smaller dry lung weight:body weight ratios than controls, with similar DNA concentrations. In general, the differences from controls were more apparent in those embryos hyperoxic from day 14 to 18 of incubation than from day 7 to 18. We conclude that changes in lung weights qualitatively similar to those occurring in the chronically hypoxic or hyperoxic newborn mammal can also be observed in the hypoxic or hyperoxic chick embryo, suggesting that they are not necessarily caused by changes in mechanical stretch on the lung.  相似文献   

19.
The choline acetyltransferase (ChAc) activity was measured in the optic centres of chick embryos after early removal of the optic cup and of young chicks after monolateral extirpation of the right eyeball after hatching. The contralateral optic lobes were thus deprived of their complement of retinal fibres. The following results were obtained: in chick embryos the ChAc was slightly lower in the deafferented lobe between the 10th and the 14th day of incubation; between the 14th and the 17th day a critical fall in activity was observed leading to a significant ChAc loss of 71 per cent. In eye deprived chicks no significant change in total ChAc activity occurred during the first postoperative month; significant changes were found only in the second month. The results reached so far suggest that removal of retinal fibres does not cause short term changes in optic centre ChAc in either the embryo or the chick. ChAc contained in nerve cell bodies seems independent of synapses and its behaviour is interpreted as a reflection of metabolic disturbance of the centre.  相似文献   

20.
This study investigated the effect of L-arginine (L-Arg) on the apoptosis of pulmonary arterysmooth muscle cells (PASMC) in rats with hypoxic pulmonary vascular structural remodeling,and itsmechanisms.Seventeen Wistar rats were randomly divided into a control group (n=5),a hypoxia group(n=7),and a hypoxia L-Arg group (n=5).The morphologic changes of lung tissues were observed underoptical microscope.Using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay,the apoptosis of PASMC was examined.Fas expression in PASMC wasexamined using immunohistochemistry.The results showed that the percentage of muscularized artery insmall pulmonary vessels,and the relative medial thickness and relative medial area of the small and medianpulmonary muscularized arteries in the hypoxic group were all significantly increased.Pulmonary vascularstructural remodeling developed after hypoxia.Apoptotic smooth muscle cells of the small and median pul-monary arteries in the hypoxia group were significantly less than those in the control group.After 14 d ofhypoxia,Fas expression by smooth muscle cells of median and small pulmonary arteries was significantlyinhibited.L-Arg significantly inhibited hypoxic pulmonary vascular structural remodeling in association withan augmentation of apoptosis of smooth muscle cells as well as Fas expression in PASMC.These resultsshowed that L-Arg could play an important role in attenuating hypoxic pulmonary vascular structural remod-eling by upregulating Fas expression in PASMC,thus promoting the apoptosis of PASMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号