首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The mechanisms that regulate the transition between the initial priming phase and DNA replication in liver regeneration are poorly understood. To study this transition, we compared events occurring after standard two-thirds partial hepatectomy, which elicits full regeneration, with response to a reduced hepatectomy, one-third partial hepatectomy (1/3PH), which leads to little DNA replication. Although the initial response to partial hepatectomy at the priming phase appeared to be similar between the two procedures, cell cycle progression was significantly blunted in 1/3PH mice. Among the main defects observed in 1/3PH mice were an almost complete deficiency in retinoblastoma phosphorylation and the lack of increase in kinase activity associated with cyclin E. We report that, in two-thirds partial hepatectomy mice, the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) preceded the start of DNA replication and was not detectable in 1/3PH animals. Injection of HB-EGF into 1/3PH mice resulted in a >15-fold increase in DNA replication. Moreover, we show that hepatocyte DNA replication was delayed in HB-EGF knock-out mice. In summary, we show that HB-EGF is a key factor for hepatocyte progression through G(1)/S transition during liver regeneration.  相似文献   

2.
3.
Recent liver regeneration studies indicate that maintaining hepatic Forkhead Box M1B (FoxM1B) expression in 12-month-old (old-aged) Transthyretin-FoxM1B transgenic mice increases hepatocyte proliferation and expression of cell cycle regulatory genes. Because these transgenic CD-1 mice maintain FoxM1B levels during the aging process, we conducted the current study to determine whether adenovirus delivery of the FoxM1B gene (AdFoxM1B) is sufficient to stimulate liver regeneration in old-aged Balb/c mice. Here we show that AdFoxM1B infection of old-aged mice caused a significant increase in FoxM1B expression, hepatocyte DNA replication, and mitosis following partial hepatectomy. This stimulation in hepatocyte S-phase progression was associated with diminished protein expression and perinuclear localization of cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) (p27) protein following partial hepatectomy. In contrast, old-aged mice infected with control virus displayed high hepatocyte levels of p27 protein, which had been localized to the nucleus prior to S-phase. Furthermore, we found that restoring FoxM1B expression did not influence p27 mRNA levels, and this new finding implicates FoxM1B in regulation of p27 protein levels. Likewise, AdFoxM1B-infected regenerating livers displayed elevated S-phase levels of Cdk2 kinase activity compared with old-aged mice infected with control virus. Furthermore, restoring FoxM1B expression in old-aged mice caused elevated levels of Cyclin B1, Cyclin B2, Cdc25B, Cdk1, and p55CDC mRNA as well as stimulating Cdc25B nuclear localization during liver regeneration, all of which are required for mitosis. These studies indicated that an acute delivery of the FoxM1B gene in old-aged mice is sufficient to re-establish proliferation of regenerating hepatocytes, suggesting that FoxM1B can be used for therapeutic intervention to alleviate the reduction in cellular proliferation observed in the elderly.  相似文献   

4.
Zou Y  Bao Q  Kumar S  Hu M  Wang GY  Dai G 《PloS one》2012,7(2):e30675
Partial hepatectomy (PH) triggers hepatocyte proliferation-mediated liver repair and is widely used to study the mechanisms governing liver regeneration in mice. However, the dynamics of the hepatocyte proliferative response to PH remain unclear. We found that PH-induced mouse liver regrowth was driven by four consecutive waves of hepatocyte replication. The first wave exhibited the highest magnitude followed by two moderate waves and one minor wave. Underlying this continuous hepatocyte replication was persistent activation of cell cycle components throughout the period of liver regeneration. Hepatocyte mitotic activity in the first three proliferative cycles showed a circadian rhythm manifested by three corresponding mitosis peaks, which were always observed at Zeitgeber time 0. The Bmal1-Clock/Wee1/Cdc2 pathway has been proposed by others to govern the circadian rhythm of hepatocyte mitosis during liver regeneration. However, we did not observe the correlations in the expression or phosphorylation of these proteins in regenerating livers. Notably, Bmal1 protein displayed frequent changes in hepatic distribution and cellular localization as the liver regrowth progressed. Further, three waves of hepatic fat accumulation occurred during hepatic regeneration. The first started before and lasted through the first round of hepatocyte proliferation, whereas the second and third occurred concomitantly with the second and third mitotic peaks, respectively. CONCLUSION: PH-induced liver regeneration consists of four continuous waves of hepatocyte proliferation coupled with three waves of hepatic fat accumulation. Bmal1, Wee1, and Cdc2 may not form a pathway regulating the circadian rhythm of hepatocyte mitosis during liver regeneration.  相似文献   

5.
6.
7.
8.
To clarify the role of transforming growth factor-β (TGF-β) and its receptors in hepatocyte growth, we studied the expression of TGF-β1 and its receptors and the sensitivity to growth inhibition by TGF-β1 protein in rat hepatocytes derived from resting and regenerating livers. In hepatocytes derived from resting livers, mRNAs for TGF-β type II receptor (TβR-II), insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M-6-PR), and TGF-β1 increased with time in primary culture. The cell surface TGF-β receptor proteins (TβR-I, II, and III), examined by the receptor affinity-labeling assay using 125I-TGF-β1, also increased, especially after 48 hr of culture. Hepatocytes were more sensitive to inhibition of DNA synthesis, when the TGF-β1 protein was added at later times in culture, corresponding to the presence of increased TGF-β receptors. In hepatocytes from regenerating livers after a partial hepatectomy (PH), an increase of TβR-I, TβR-II, TβR-III, IGF-II/M-6-PR, and TGF-β1 mRNAs was found, compared with hepatocytes from resting livers. Similarly, using TGF-β receptor affinity-labeling assay, hepatocytes from PH livers were found to have an increase in TβR-I, II, and III proteins, with a peak at 4 days post-PH, compared with hepatocytes from resting livers. When TGF-β1 protein was added for a short period (6 or 24 hr) after cell attachment to hepatocyte cultures, it inhibited DNA synthesis more effectively in hepatocytes from regenerating compared with resting livers. Our results show that hepatocyte TGF-β receptors and sensitivity to growth inhibition by TGF-β1 protein change together and are modulated during liver regeneration, as well as during the conditions of primary culture. J. Cell. Physiol. 176:612–623, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
After a two-thirds hepatectomy, normally quiescent liver cells are stimulated to reenter the cell cycle and proliferate to restore the original liver mass. One of the most rapidly and highly induced genes and proteins in regenerating liver is insulin-like growth factor binding protein 1 (IGFBP-1), a secreted protein that may modulate the activities of insulin-like growth factors (IGFs) or signal via IGF-independent mechanisms. To assess the functional role of IGFBP-1 in liver regeneration, mice with a targeted disruption of the IGFBP-1 gene were generated. Although IGFBP-1(-/-) mice demonstrated normal development, they had abnormal liver regeneration after partial hepatectomy, characterized by liver necrosis and reduced and delayed hepatocyte DNA synthesis. The abnormal regenerative response was associated with blunted activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and a reduced induction of C/EBP beta protein expression posthepatectomy. Like cell cycle abnormalities observed in hepatectomized C/EBP beta(-/-) mice, cyclin A and cyclin B1 expression was delayed and reduced in IGFBP-1(-/-) livers, whereas cyclin D1 expression was normal. Treatment of IGFBP-1(-/-) mice with a preoperative dose of IGFBP-1 induced MAPK/ERK activation and C/EBP beta expression, suggesting that IGFBP-1 may support liver regeneration at least in part via its effect on MAPK/ERK and C/EBP beta activities. These findings are the first demonstration of the involvement of IGFBP-1 in the regulation of in vivo mitogenic signaling pathways.  相似文献   

10.
11.
The Hepatitis B virus X (HBx) protein has been strongly implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, effects of the HBx protein on cell proliferation and cell death are controversial. This study investigates the effects of the HBx protein on liver regeneration in two independent lines of HBx transgenic mice, which developed HCC at around 14 to 16 months of age. High mortality, lower liver mass restoration, and impaired liver regeneration were found in the HBx transgenic mice post-hepatectomy. The levels of alanine aminotransferase and alpha-fetoprotein detected post-hepatectomy increased significantly in the HBx transgenic livers, indicating that they were more susceptible to damage during the regenerative process. Prolonged activation of the immediate-early genes in the HBx transgenic livers suggested that the HBx protein creates a strong effect by promoting the transition of the quiescent hepatocytes from G0 to G1 phase. However, impaired DNA synthesis and mitosis, as well as inhibited activation of G1, S, and G2/M markers, were detected. These results indicated that HBx protein exerted strong growth arrest on hepatocytes and imbalanced cell-cycle progression resulting in the abnormal cell death; this was accompanied by severe fat accumulation and impaired glycogen storage in the HBx transgenic livers. In conclusion, this study provides the first physiological evidence that HBx protein blocks G1/S transition of the hepatocyte cell-cycle progression and causes both a failure of liver functionality and cell death in the regenerating liver of the HBx transgenic mice.  相似文献   

12.
The effect of COX (cyclo-oxygenase)-2-dependent PGs (prostaglandins) in acute liver injury has been investigated in transgenic mice that express human COX-2 in hepatocytes. We have used three well-established models of liver injury: in LPS (lipopolysaccharide) injury in D-GalN (D-galactosamine)-preconditioned mice; in the hepatitis induced by ConA (concanavalin A); and in the proliferation of hepatocytes in regenerating liver after PH (partial hepatectomy). The results from the present study demonstrate that PG synthesis in hepatocytes decreases the susceptibility to LPS/D-GalN or ConA-induced liver injury as deduced by significantly lower levels of the pro-inflammatory profile and plasmatic aminotransferases in transgenic mice, an effect suppressed by COX-2-selective inhibitors. These Tg (transgenic) animals express higher levels of anti-apoptotic proteins and exhibit activation of proteins implicated in cell survival, such as Akt and AMP kinase after injury. The resistance to LPS/D-GalN-induced liver apoptosis involves an impairment of procaspase 3 and 8 activation. Protection against ConA-induced injury implies a significant reduction in necrosis. Moreover, hepatocyte commitment to start replication is anticipated in Tg mice after PH, due to the expression of PCNA (proliferating cell nuclear antigen), cyclin D1 and E. These results show, in a genetic model, that tissue-specific COX-2-dependent PGs exert an efficient protection against acute liver injury by an antiapoptotic/antinecrotic effect and by accelerated early hepatocyte proliferation.  相似文献   

13.
14.
15.
16.
Augmenter of Liver Regeneration (Alrp) enhances, through unknown mechanism/s, hepatocyte proliferation only when administered to partially hepatectomized (PH) rats. Liver resection, besides stimulating hepatocyte proliferation, induces reactive oxygen species (ROS), triggering apoptosis. To clarify the role of Alrp in the process of liver regeneration, hepatocyte proliferation, apoptosis, ROS-induced parameters and morphological findings of regenerating liver were studied from PH rats Alrp-treated for 72 h after the surgery. The same parameters, evaluated on regenerating liver from albumin-treated PH rats, were used as control. The results demonstrated that Alrp administration induces the anti-apoptotic gene expression, inhibits hepatocyte apoptosis and reduces ROS-induced cell damage. These and similar data from in vitro studies and the presence of 'Alrp homologous proteins' in viruses as well as in mammals (i) allow to hypothesize that Alrp activity/ies may not be exclusive for regenerating liver and (ii) suggest the use of Alrp in the treatment of oxidative stress-related diseases.  相似文献   

17.

Background

Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder but clinically more relevant condition.

Results

Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones) identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration.

Conclusions

Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.  相似文献   

18.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   

19.
Interleukin-6 (IL-6) via its signal transducer gp130 is an important mediator of liver regeneration involved in protecting from lipopolysaccharide (LPS)-induced liver injury after partial hepatectomy (PH). Here we generated mice either defective (Delta) in hepatocyte-specific gp130-dependent Ras or STAT activation to define their role during liver regeneration. Deletion of gp130-dependent signaling had major impact on acute phase gene (APG) regulation after PH. APG expression was blocked in gp130-DeltaSTAT animals, whereas gp130-DeltaRas mice showed an enhanced APG response and stronger SOCS3 regulation correlating with delayed hepatocyte proliferation. To define the role of SOCS3 during hepatocyte proliferation, primary hepatocytes were co-stimulated with IL-6 and hepatocyte growth factor. Higher SOCS3 expression in gp130-DeltaRas hepatocytes correlated with delayed hepatocyte proliferation. Next, we tested the impact of LPS, mimicking bacterial infection, on liver regeneration. LPS and PH induced SOCS3 and APG in all animal strains and delayed cell cycle progression. Additionally, IL-6/gp130-dependent STAT3 activation in hepatocytes was essential in mediating protection and thus required for maximal proliferation. Unexpectedly, oncostatin M was most strongly induced in gp130-DeltaSTAT animals after PH/LPS-induced stress and was associated with hepatocyte proliferation in this strain. In summary, gp130-dependent STAT3 activation and concomitant SOCS3 during liver regeneration is involved in timing of DNA synthesis and protects hepatocyte proliferation during stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号