首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competition between larvae of two anuran species (Bufo bufo and B. calamita) was investigated under field conditions likely to disfavour cell-mediated interference mechanisms. The experiment used triplicated cage treatments in an unshaded farm pond, a poor habitat for the unicellular pathogen Anurofeca richardsi implicated in interference competition between these anurans in sand dune ponds. The farm pond experienced lower maximum temperatures than a nearby dune pond but sustained larger numbers of eukaryotic algae and therefore had higher primary productivity. Survival and growth of B. calamita larvae were inversely related to density in all treatments but interspecific effects were much more severe than intraspecific ones. There was no evidence of A. richardsi in any treatment and competition between the Bufo larvae was therefore intense in the absence of Anurofeca-mediated interference effects. Anuran larvae reduced the standing crop and altered the community composition of algae in the treatment cages but larval growth rates were not simply related to food availability. Algal cell numbers in larval guts, a measure of food acquisition, were however inversely related to tadpole density in both species. Feeding niche overlap was high but decreased as larval density increased. Resource competition was implicated as the most probable major mechanism. Received: 1 September 1999 / Accepted: 20 January 2000  相似文献   

2.
Growth and population density of the larvae, Hynobius nebulosus tokyoensisTago , were estimated in a small pond within the study site settled in Habu village of Hinodemachi, a suburb of Tokyo City, during the period from 1975 to 1980. The mortality factors which influenced the survival rate of larvae were also evaluated from the ecological point of view. Laboratory experiments on the growth of larvae and predation by newts were conducted in pararell with the field survey. The results showed that growth rate of larvae under the natural condition was very slow, as compared with that under the laboratory condition with sufficient food supply, and mean body size at metamorphosis was negatively correlated with the density at that time. This suggested that food resources were in short supply in the pond, and there occurred a severe intraspecific competition for food among larvae. The mortality rate of larvae was so high, 80–99% in each year, and the density of larvae survived until metamorphosis varied so greatly from year to year that the larval stage was the most important stage throughout the life cycle to the maintenance of a population for this salamander. The most important factors which contributed to this high mortality were the predation by the newt, Triturus pyrrhogaster pyrrhogasterBoie , and cannibalism. From the laboratory experiment, it was found that predators could attack only small larvae successfully, and successful attack rate decreased sharply as larvae grew larger. This relationship resulted in the characteristic L-shaped pattern of survivorship curve of larvae; that is, heavy mortality just after hatching period.  相似文献   

3.
Condition and size of damselflies: a field study of food limitation   总被引:2,自引:0,他引:2  
Robert L. Baker 《Oecologia》1989,81(1):111-119
Summary Based on evidence from field manipulations, several authors have recently suggested that interference competition among larval odonates reduces individual growth rates and biomass by reducing foraging rates. This study was designed to test the effects of food shortage on condition (relative mass per unit head width) of larval Ischnura verticalis (Odonata: Coenagrionidae) under laboratory conditions and to use these results to estimate the degree of food shortage of larvae under naturally occurring field conditions. In the laboratory, there were marked differences in condition of larvae fed diets ranging from ad libitum feeding with worms to ad libitum feeding with Daphnia 1 day out of every 8. Condition of larvae collected from May through October from 17 different sites in southern Ontario indicated that, for most of the year, larvae had conditions similar to those fed ad libitum with Daphnia in the laboratory. There was no evidence that larval condition was related to population density. Condition of larvae in most sites during July was similar to that of larvae fed poor diets in the laboratory. It is unlikely that the low conditions were due to competition as there were no correlations with density across sites and population densities during July were at their lowest. Adult head widths showed a seasonal decline from mid June to the end of the flight season. There was no evidence that head widths were related to population density although there was some evidence that head widths of males were positively related to larval condition. My results do not support the hypothesis that competition is important in affecting foraging rates and subsequent development of larvae. Contrasts between my results and other studies may stem from difficulties with the interpretation of field experiments, that densities in my study may have been low due to fish predation, and/or that I. verticalis larvae are slow moving relative to other larvae and thus less likely to interact.  相似文献   

4.
We carried out field experiments to examine the variability of interspecific competition of mosquito larvae among microcosms in a bamboo grove (small spatial scale) and between bamboo groves at two sites, with single and multiple mosquito species (large spatial scale). Four types of microcosms that differed in capacity and litter input were set. In the hillside bamboo grove, where multiple species occurred, succession of the predominant species from Aedes albopictus to Tripteroides bambusa was observed in control microcosms from which no mosquito larvae were removed. Weekly removal of competitive species resulted in increased pupation of A. albopictus and adult body weight under both rich and poor resource conditions. In the late period of the experiments, the effect of competitor removal on pupation of A. albopictus was greater in deep containers that never dried than in shallow containers that were dried in the laboratory. The number of eggs showed a slight difference between competitor‐excluded and deep control microcosms. These results indicate that interspecific competition limits pupation of A. albopictus more strongly in deep containers than in shallow and drought‐prone containers.
Compared with the hillside site, the larval density of A. albopictus attained a higher density in the bamboo grove in the plain where no competitive species occurred, due to a higher oviposition rate. Lower rate of pupation and lower adult weight at the plain site than at the hillside site indicated that resource limitation was more severe at the plain site. Populations of A. albopictus at hillside and plain sites appeared to suffer from strong inter‐ and intraspecific competition, respectively. At the hillside site, the intensity of interspecific competition appeared to increase later in the breeding season, with a high larval density of T. bambusa. In contrast, at the plain site, intensity of intraspecific competition appeared to be reduced later in the breeding season with decreasing larval density of A. albopictus.  相似文献   

5.
1. The carrying capacity of a site for migratory water birds, expressed in bird-days, can be of particular conservation value. Several attempts have been made to model this carrying capacity using ideal free distribution models such as, for instance, depletion models, in which the distribution is fully determined by exploitative competition. 2. In the tests of depletion models carried out so far, no alternative models were compared; rather, one specific model was tested. We tested whether bird-days were more in accordance with birds depleting the food resource (a1) until a critical food density which just enabled survival or (a2) until a threshold food density which renders the site as profitable as an alternative site; and birds (b1) satisfying their daily requirements or (b2) maximizing daily intake. 3. We studied Bewick's swans feeding on below-ground tubers of fennel pondweed in one part of an autumn staging site. In most years between 1995 and 2005, we measured tuber biomass densities around September, November and March, and counted swans daily during their stopover in October. 4. The best fit between observed and predicted bird-days was obtained by assuming that the swans were maximizing their daily intake and depleting the tubers until a threshold biomass density (which yielded the same energetic return as the alternative food source after accounting for a small part of the initial tuber biomass being out of reach of the swans). Also in line with daily intake maximization, the daily feeding time did not differ from 10 h day(-1), the value predicted for Bewick's swans based on their feeding costs. 5. Our results suggests that the applicable model to calculate carrying capacity may depend strongly on whether birds use a site to stopover or to winter, because it determines whether the birds are more likely to use a threshold or critical food density, and to behave as energy maximizers or satisficers.  相似文献   

6.
The dynamics of exploitation of standard experimental food sources by the German cockroach, Blattella germanicaL. (Blattellidae), were analyzed in an urban habitat in relation to developmental stage. The data presented here stress differences in foraging capacities between small (first-and second-instar) larvae and animals of other developmental stages. The first animals to arrive in a food patch presented a developmental-stage distribution significantly different from that of the general population. Adults and large larvae (fifth and sixth instars) were the first to find food sources and, in particular, before small larvae. Significant differences appeared between developmental stages concerning givingup time and the time animals left a patch. Small larvae were significantly underrepresented in a patch just before food exhaustion but they were significantly more numerous than expected just after depletion. Small larvae remained in the vicinity of a depleted food dish longer than animals of other developmental stages. Adults left patches as soon as these were depleted, long before small larvae did. Developmental stage influenced rate of departure. These observations indicate that cockroaches improve their foraging performance as they grow larger.  相似文献   

7.
Cannibalism by larval damselflies late in larval development on larvae a few instars smaller has been widely documented. I examine here the survival of eggs oviposited near the end of the flight season of adult Enallagma boreale in the presence and absence of potential cannibals, individuals that hatched from eggs earlier in the season, over an extended part of the life-cycle. The role of competition as a modifier of cannibalism was examined by manipulating egg density, environmental productivity, and habitat complexity. Survival in the absence of potential cannibals ranged from 5% to nearly 50% but was only 0–3% in the presence of cannibals. Survival of small larvae was related to manipulations of habitat complexity but not initial density or resources. There were no significant interactions of the presence of large larvae with other experimental treatments on the survival of small larvae. The mean size of small larvae was greater in the presence of cannibals. This may be because the cannibalism treatment reduced the density of small larvae and reduced competition for resources, or that the cannibals preferentially fed on small larvae and only relatively large individuals remained. Fertilization of the habitat or manipulating the initial density of small larvae did not affect mass of small larvae at the end of the experiment, which would be expected if small larvae were affected by competition for resources. Potential cannibals, however, emerged at higher mass when small larvae were present at low density and when productivity of the habitat was increased. This suggests that the negative effect of competition by small larvae outweighs the positive effect of being potential prey for large larvae.  相似文献   

8.
Summary CrowdedEpirrita larvae had shorter larval periods than, and similar pupal masses to, their solitary siblings when reared on low quality diets. When fed on high quality diets, pupal masses of crowded larvae were lower than in singletons, and there was no difference in larval period. Because changes in food availability (absolute shortage, induced resistance in foliage) are caused by high larval densities in the field, crowding-triggered phenotypic changes may helpEpirrita to overcome detrimental consequences of high larval density. Pupal period was longer in crowded larvae than in singletons and crowded adults emerged later than their solitary siblings. Eggs of late emerging moths eclosed late in the ensuing spring, which coincides with delayed leaf flush in the year after defoliation. The reason for the faster growth of crowded individuals on poor diets was higher intake albeit less thorough processing of food in crowded, but not in solitary, larvae. On good diets solitary individuals tended to consume more than crowded larvae but there was no difference in processing. Predicted differences of host plant use between stealthy and opportunistic types of herbivores (sensu Rhoades 1985) were generally found between solitary and aggregated larvae on poor but not on good diets. The group response could not be explained by benefits to the group although the assumptions of Wilson's model of group selection were satisfied.  相似文献   

9.
We examined the use of social information in fruitfly larvae, which represent an ideal model system owing to their robust learning abilities, small number of neurons and well-studied neurogenetics. Focal larvae showed attraction to the distinct odour emanating from food occupied by other larvae. In controlled learning experiments, focal larvae preferred novel odours previously paired with food occupied by other larvae over novel odours previously paired with unoccupied food. When we gave groups of larvae a choice between food patches differing in quality, more larvae aggregated on the higher-quality food, suggesting that attraction to and learning about cues associated with other larvae can be beneficial. Furthermore, larvae were more likely to find the best available food patch in trials when that food patch was occupied by other larvae than in trials when that food patch was unoccupied. Our data suggest, however, that the benefits from joining others may be at least partially offset by the fitness costs of increased competition, because larvae reared in isolation did as well as or better than larvae reared in groups on three key fitness parameters: developmental rate, survival rate and adult dry body mass. Our work establishes fruitfly larvae as a highly tractable model species for further research on the mechanisms that modulate behaviour and learning in a social context.  相似文献   

10.
Ola M. Fincke 《Oecologia》1994,100(1-2):118-127
The relative importance of intraspecific, interspecific, and seasonal causes of larval mortality were investigated for aquatic larvae of the giant damselfly Megaloprepus coerulatus in Panama. These larvae live in water-filled holes in fallen and living trees, where they and three other common odonate species are the top predators. By mid wet season, M. coerulatus larvae were found in nearly half of all tree holes that harbored odonates. Although M. coerulatus were typically, but not always, eliminated from holes inhabited by larger hetero-specifics, M. coerulatus were more likely to encounter conspecifics than other odonate species. Hole with less than 11 of water rarely contained more than a single larva. In large holes where M. coerulatus was the only odonate species present, multiple larvae coexisted at a density of one larva per 1–21 of water. There the absence of 2–4 of the 5 larval size classes, despite a continuous input of eggs, suggested that cannibalism was a common cause of mortality. The size of the final instar, which determined adult body size, was correlated positively with tree hole volume for male, but not female, larvae. Experiments showed that when two larvae were placed together in 0.4–1 holes with abundant tadpole prey, the larger larva killed the smaller one. Often the larva that was killed was not eaten. Small larvae were more tolerant of each other than were pairs of medium or large larvae. Before killing occurred, the presence of larger larvae reduced the growth of smaller individuals, relative to controls. Obligate killing was density-dependent. In 3.0–1 holes with ad libitum prey, conspecific killing occurred until the larval density stabilized at one larva per 1–1.5 I, similar to the density found in large holes under field conditions, For M. coerulatus, cannibalism functions to reduce the number of potential competitors for food in addition to providing nutrition. When interactions between paired larvae in small holes were experimentally prevented, competition for food reduced the growth of one or both larvae relative to controls. Holes that were watered during the dry season supported larval densities similar to those in the wet season. Thus, dry season mortality could not be attributed to a decrease in available prey. Rather, M. coerulatus larvae could not survive more than 1 month of complete drying. Because the dry season typically lasts more than 6 weeks, habitat drying is a secondary source of mortality, affecting second- or third-generation larvae that fail to emerge before tree holes dry out completely.  相似文献   

11.
Culex quinquefasciatus Say (Diptera: Culicidae) is an abundant urban mosquito that is the vector of filariasis. Breeding in septic tanks, where there are very high levels of bacterial food, it is likely to have a different reaction to crowding compared with other mosquitoes. To test for the presence and type of crowding effects, four larval densities of C. quinquefasciatus varying from 0.4 to 3.2 larvae ml?1 of water were reared in tubes. Mortality was found to greatly increase at densities above 0.8 larvae, whereas larval duration increased even above 0.4 larvae ml?1. Changing the water in the tubes daily gave a small (but significant) response in reducing mortality and larval duration. However, when larvae kept at a low density shared the same water with larvae at high density, there was no chemical influence on their growth rate and mortality. The effect of crowding was primarily due to physical disturbances between larvae. When larvae were kept at a high density in the same volume of water, but in shallow trays with a large surface area and therefore much less contact between them, mortality was the same as for the lowest density. There was still, however, a significant increase in larval duration from 8.6 days at 0.4 larvae ml?1 to 12.1 days at 3.2 larvae ml?1. It is therefore concluded that the larvae respond to physical rather than chemical factors by prolonging larval development and having some increase in mortality.  相似文献   

12.
Relationships between food stealing and exploitation of main food sources were investigated in the German cockroach,Blattella germanica (L.) (Dictyoptera: Blattellidae). The occurrence of food stealing during food exploitation was associated with the course of depletion of the main food sources and not with spatial distribution or distance from shelter. Stolen pieces of food always appeared towards the end of exploitation of a food source. Their occurrence appeared to be a consequence of the exploitation of a food source rather than a specific strategy. The proportion of animals of different developmental stages observed with stolen pieces differed significantly from that in the general population. There were proportionally more males, females and large larvae and proportionally less small larvae with stolen pieces than on the main food source. These data suggest that stolen pieces appeared when competition for access to food increased, and that larger cockroaches (adults and larger larvae) were then dominant and benefited from monopolizing stolen pieces of food.  相似文献   

13.
Abstract.
  • 1 The effects of density, feeding regime, and body size on interference competition in the pit-digging larvae of the ant-lion Macroleon quinquemaculatus (Hagen) were investigated in laboratory experiments.
  • 2 Competition had little effect on the pit size of winners but losers constructed much smaller pits than isolated larvae. Losers were less likely to dig or maintain pits and more likely to move than winners.
  • 3 Competition was much stronger between well-fed larvae than between hungry ones, and well-fed competitors showed reduced growth rates. Well-fed larvae orientated themselves so that they could throw sand into their neighbour's pit whereas hungry larvae faced away from each other. Differences in hunger level reversed the competitive advantage of larger larvae only when individuals were of similar size.
  • 4 Cannibalism was density-dependent and most frequent in hungry, similar-sized, larvae; the smaller larva was usually the victim.
  • 5 Displays/challenges between larvae affected the distance between pits. Body size was the main determinant of contest outcome though pit ownership and hunger level also had an effect.
  相似文献   

14.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

15.
Chemical insecticides were administered to larvae of the common cutworm Spodoptera litura (Fabricius) concomitantly with a viral insecticide containing nucleopolyhedrovirus SpltNPV, in order to decrease the level of dietary intake of the virus-infected larvae. Aqueous solutions of imidacloprid (Admire), flubendiamide (Phenix), or cartap (Padan) at non-lethal doses, together with a lethal dose of SpltNPV occlusion bodies (Hasumon-Tenteki), were prepared. The surfaces of small blocks of food were treated with the mixtures and presented to S. litura larvae for 24 h. On the following day, a new diet block was provided which had been treated with one-third or one-fourth of the initial dose of the chemical insecticide. The larvae were reared for 5 days and the level of dietary intake was recorded. The administration of flubendiamide and cartap decreased the dietary intake more strongly in virus-infected larvae than in non-infected larvae.  相似文献   

16.
刘文爱  范航清 《生态学报》2011,31(23):7320-7324
广州小斑螟是红树林的一种灾害性的食叶害虫.通过室内饲养和野外观察,对广州小斑螟的发生和环境因素的关系进行了详细的研究.结果表明,随着龄级的增加,取食量增大;在不同样地不同滩位的虫口密度差异性规律不同;在单株白骨壤的不同方位虫口密度差异显著,正南方向虫口密度最高,正西、正北虫口密度最低;在单株白骨壤的中上部明显高于下部;广州小斑螟大龄幼虫较耐水淹,水淹6h的死亡率为0;不同地区温度的差异可导致广州小斑螟的发育进度的不同.  相似文献   

17.
Field experiments were conducted in order to investigate the mode of exploitation of food resources and the mechanism of coexistence of mixed larval populations of the two chrysomelids,Gastrophysa atrocyanea andGalerucella vittaticollis, under limited food resource conditions. The larval survival rates seemed high enough to assure coexistence when hatchlings of the two species were released in 1∶1 and 1∶3 ratios on a host plant. However, the survival rate became almost nil for both species when a 3∶1 ratio was employed, suggesting asymmetrical interspecific competition. Wasted food consumption was much higher inG. atrocyanea larvae. The population ofG. atrocyanea seemed to be regulated more by intraspecific competition, while on the other hand, the population ofG. vittaticollis was considered to be more likely affected by the interspecific competition withG. atrocyanea, depending on the initial ratio and density of the two species.  相似文献   

18.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

19.
J. B. Rasmussen 《Oecologia》1987,73(1):133-138
Summary The effect of a predatory leech, Nephelopsis obscura, on survivorship, growth, and production of chronomid larvae was studied by enclosure experiments carried out in a small pond. The prey population was composed almost entirely of the tubiculous, microphagous chironomid larvae, Chironomus riparius and Glyptotendipes paripes. Nephelopsis significantly reduced chironomid survivorship within the enclosures, and accounted for most of the measured mortality of fourth instar larvae. The cropping by Nephelopsis was not significantly biased toward either prey species. In long-term experiments (66 d) chironomid biomass in enclosures without leeches reached much higher levels than in enclosures containing Nephelopsis. This increase in biomass was due to growth of surviving larvae, rather than recruitment, since emergence and oviposition were not going on during the course of the experiments. The enhanced survivorship of larvae within leech-free enclosures was eventually accompanied by reduced growth and specific production (daily production/biomass) for C. riparius, which made up about 90% of the larval population. Growth and specific production of G. paripes (10% of larval population) was not affected. Short-term experiments (25 d) involving manipulation of densities and species ratio (9:1 CR:GP and 1:9 CR:GP) of larvae revealed that growth of the majority species was strongly influenced by larval density, whereas growth of the minority species was not. The same pattern was observed both in the presence and in the absence of Nephelopsis and was a result of differences in resource utilization between the two species. In the shortterm experiments, growth rates estimated for larvae exposed to leeches were significantly less than those for larvae in leech-free enclosures. This could be due either to size-biased consumption of larvae by Nephelopsis, or possibly a disturbance factor leading to reduced larval food intake and/or increased metabolic costs.  相似文献   

20.
Central place foraging by larvae of the charaxine butterfly,Polyura pyrrhus, was studied. Larvae made foraging trips from the silken pads they constructed on leaflets of their foodplant,Acacia sp. A foraging trip sometimes involved complete depletion of a single patch of foodplant pinnules. Larvae which did not deplete a patch appeared to eat until they were satiated, whereas larvae which depleted a patch either visited another patch (multiple-patch foraging) or returned directly to the pad (single-patch foraging). If the food intake at the first patch was small a larva tended to make a “multiple-patch” decision, especially when the pinnule-patch was distant from the resting pad. The duration between successive foraging trips (resting time on the pad) was much longer than the round trip duration: on average about 3 h and 15 min, respectively. The resting time is suggested to be a handling time (i.e., digesting food in the gut) and was disproportional to the amount of food consumed, i.e., the handling efficiency was higher when the larva consumed a larger amount of food. This may be the reason why larvae usually ate until they were satiated. A food-intake-rate maximizing model was constructed to describe the decision rule as to whether a larva should make a single-patch or a multiple-patch foraging trip. One of the model's predictions (i.e., larvae should engage in multiple-patch foraging when the food intake at the first patch is small) qualitatively corresponds with data, however, the model does not explain the effect of travelling time on decision making in larvae. Several other factors which may influence the decision making of larvae are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号