共查询到20条相似文献,搜索用时 31 毫秒
1.
Lorena Pochini 《生物化学与生物物理学报:生物膜》2004,1661(1):78-86
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein. 相似文献
2.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein. 相似文献
3.
Francesca Oppedisano 《生物化学与生物物理学报:生物膜》2008,1778(10):2258-2265
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue α-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B°-like. 相似文献
4.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like. 相似文献
5.
Francesca Oppedisano 《生物化学与生物物理学报:生物膜》2007,1768(2):291-298
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamineex/glutaminein pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+. 相似文献
6.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamine(ex)/glutamine(in) pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+. 相似文献
7.
Rajan DP Kekuda R Huang W Devoe LD Leibach FH Prasad PD Ganapathy V 《Biochimica et biophysica acta》2000,1463(1):6-14
We have isolated a cDNA from a rabbit intestinal cDNA library which, when co-expressed with the heavy chain of the human 4F2 antigen (4F2hc) in mammalian cells, induces system L-like amino acid transport activity. This protein, called LAT2, consists of 535 amino acids and is distinct from LAT1 which also interacts with 4F2hc to induce system L-like amino acid transport activity. LAT2 does not interact with rBAT, a protein with a significant structural similarity to 4F2hc. The 4F2hc/LAT2-mediated transport process differs from the 4F2hc/LAT1-mediated transport in substrate specificity, substrate affinity, tissue distribution, interaction with D-amino acids, and pH-dependence. The 4F2hc/LAT2-associated transport process has a broad specificity towards neutral amino acids with K(t) values in the range of 100-1000 microM, does not interact with D-amino acids to any significant extent, and is stimulated by acidic pH. In contrast, the 4F2hc/LAT1-associated transport process has a narrower specificity towards neutral amino acids, but with comparatively higher affinity (K(t) values in the range of 10-20 microM), interacts with some D-amino acids with high affinity, and is not influenced by pH. LAT2 is expressed primarily in the small intestine and kidney, whereas LAT1 exhibits a much broader tissue distribution. 相似文献
8.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16+/-0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9+/-0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol. 相似文献
9.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16 ± 0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9 ± 0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol. 相似文献
10.
Hongmin Zhen Koichi Nakamura Yasuyuki Kitaura Yoshihiro Kadota Takuya Ishikawa Yusuke Kondo 《Bioscience, biotechnology, and biochemistry》2013,77(12):2057-2062
Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action. 相似文献
11.
J M Launay 《Comptes rendus des séances de la Société de biologie et de ses filiales》1992,186(3):198-205
After treatment of human platelets by a sulfhydryl-dependent bacterial protein cytolysin, a glycoprotein was reproducibly purified by a one-step affinity chromatography using 6-fluorotryptamine as ligand and elution by serotonin (5-HT), cyanoimipramine, citalopram, or a Na(+)-free buffer. The purified fraction migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band with an apparent molecular mass of 68 kDa. The purified glycoprotein bound the 5-HT uptake blockers 3H-paroxetine, 3H-cyanoimipramine, and 3H-citalopram with Kds similar to the ones observed for intact human platelets. No binding was detected with 3H-hydroxytetrabenazine, 3H-ouabain, 3H-gamma aminobutyric acid or 3H-BTCP, the respective markers of the granular monoamine transporter, the plasma membrane Na+, K(+)-ATPase, the gamma aminobutyric acid and dopamine carriers. The purified 68-kDa glycoprotein is therefore likely to correspond at least to the paroxetine and imipramine binding domains of the 5-HT transporter located at the human platelet plasma membrane. Finally a 68-kDa protein was purified in the same conditions from the human megakaryocytic cell line Dami and to a lesser extent from the human megakaryoblastic cell line MEG-01 but not from the human erythroleukaemic cell line HEL. 相似文献
12.
Vesiculated fragments of presynaptic plasma membranes have been isolated from the purely cholinergic electromotor nerve terminals of Torpedo marmorata. Synaptosomes, generated from the terminals by homogenization, were separated on a discontinuous Ficoll gradient and then lysed by osmotic shock at 2 degrees C, pH 8.5 in the presence of 0.1 mM MgCl2. These conditions for lysis were optimal for choline transport. Electron micrographs of lysed synaptosomes showed vesiculated membranes with diameters smaller than those of synaptosomes; occasionally, synaptic vesicles were observed attached to them. Intact mitochondria or synaptosomes and basal laminae were not present. High-affinity (KT = 1.7 microM) uptake of choline into these vesiculated membrane fragments showed: an absolute dependence on the Na+ gradient (outside greater than inside), a transient Na+-gradient-dependent accumulation of choline over the equilibrium concentration (over-shoot), electrogenicity and rheogenicity, since the uptake was further stimulated in the presence of a Na+ gradient by valinomycin, dependence on the presence of external Cl-, and partial dependence on a Cl- gradient (outside greater than inside), high-affinity (Ki = 25 nM) inhibition by hemicholinium-3 and temperature sensitivity. The plasma membranes were further purified by centrifugal density gradient fractionation on a 4-12% Ficoll gradient. Several enzymes and polypeptides copurified with the specific binding sites for choline present in the membranes. The fraction with the most binding sites was one denser than 12% Ficoll. This was also the fraction richest in acetylcholinesterase, 5'-nucleotidase and polypeptides of relative molecular mass, Mr (X 10(-3)) of greater than 200, 140, 68 (doublet), 57, 54 and 28. Acetylcholinesterase was positively identified as a Mr 68 000 component by immune blot. By contrast the ouabain-sensitive ATPase showed a negative correlation with choline binding sites. When the solubilized proteins of the vesiculated membranes were transferred to liposomes, they conferred on the latter the capacity to take up choline in a manner closely resembling its transport in natural membranes but with an initial (one minute) rate of uptake approximately 10-times greater per mg of protein. Several proteins were selectively transferred to the liposomes including ones of Mr (X 10(-3)) 34, 42, 47, 54, 60, 68, 92, 160 and greater than 200. The polypeptides of Mr (X 10(-3)) 140, 57 and 28 were lost in the transfer.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
Biochemistry textbooks and cell culture experiments seem to be telling us two different things about the significance of external glutamine supply for mammalian cell growth and proliferation. Despite the fact that glutamine is a nonessential amino acid that can be synthesized by cells from glucose‐derived carbons and amino acid‐derived ammonia, most mammalian cells in tissue culture cannot proliferate or even survive in an environment that does not contain millimolar levels of glutamine. Not only are the levels of glutamine in standard tissue culture media at least ten‐fold higher than other amino acids, but glutamine is also the most abundant amino acid in the human bloodstream, where it is assiduously maintained at approximately 0.5 mM through a combination of dietary uptake, de novo synthesis, and muscle protein catabolism. The complex metabolic logic of the proliferating cancer cells' appetite for glutamine—which goes far beyond satisfying their protein synthesis requirements—has only recently come into focus. In this review, we examine the diversity of biosynthetic and regulatory uses of glutamine and their role in proliferation, stress resistance, and cellular identity, as well as discuss the mechanisms that cells utilize in order to adapt to glutamine limitation. 相似文献
14.
Yongen Lu Zhiyong Song Kai Lü Xingming Lian Hongmei Cai 《Acta Physiologiae Plantarum》2012,34(5):1943-1962
Nitrogen (N) is one of the most important limiting factors for plant growth and development. Amino acids are the major source of organic N, which is converted from inorganic N absorbed by plant roots from the soil. Amino acid transporters are the principal mediators of organic N distribution and important regulators of resource allocation in plants. Although the complete genomic sequence of rice has already been released, there is still little known about amino acid transporter genes in rice. In this study, 79 OsAAT genes were identified by a database search of the rice genome based upon HMM profiles. A bioinformatics analysis of the complete set of OsAAT genes is presented, including chromosomal location, phylogenetic analysis, gene structure, protein analysis, conserved motifs, protein structures and cis-element analysis of the promoters. In addition, the comprehensive expression profile of OsAAT genes in rice tissues/organs under N starvation conditions was investigated by real-time PCR analysis. Diverse expression patterns of OsAAT genes indicated diverse biological functions of the amino acid transporters and the important roles of OsAAT genes in N uptake, metabolism and distribution during N starvation. The evaluation of yield and carbon (C) and N content of osaat knockout mutants also suggested the important roles of the OsAAT5, OsAAT7, OsAAT24, OsAAT49 and OsAAT60 genes in yield and biomass production and C and N metabolism and distribution in rice plants. 相似文献
15.
This paper describes the characteristics of Na+-dependent d-glucose transport into liposomes made from soybean phospholipids into which have been reconstituted detergent-solubilized components from the rabbit renal proximal tubular brush border membrane. Conditions for optimal and quantitative reconstitution of glucose carriers are defined. Na+-dependent d-glucose uptake occurs via a saturable system with a of 0.125–0.135 mM, is responsive to the volume of the internal liposomal space, and shows ‘overshoot’ as seen in natural membranes. The rate of Na+-dependent d-glucose uptake and the magnitude of the ‘overshoot’ are proportional to the concentration of protein used in reconstitution. 相似文献
16.
Pawlik TM Lohmann R Souba WW Bode BP 《American journal of physiology. Gastrointestinal and liver physiology》2000,278(4):G532-G541
Burn injury elicits a marked, sustained hypermetabolic state in patients characterized by accelerated hepatic amino acid metabolism and negative nitrogen balance. The transport of glutamine, a key substrate in gluconeogenesis and ureagenesis, was examined in hepatocytes isolated from the livers of rats after a 20% total burn surface area full-thickness scald injury. A latent and profound two- to threefold increase in glutamine transporter system N activity was first observed after 48 h in hepatocytes from injured rats compared with controls, persisted for 9 days, and waned toward control values after 18 days, corresponding with convalescence. Further studies showed that the profound increase was fully attributable to rapid posttranslational transporter activation by amino acid-induced cell swelling and that this form of regulation may be elicited in part by glucagon. The phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and LY-294002 each significantly attenuated transporter stimulation by amino acids. The data suggest that PI3K-dependent system N activation by amino acids may play an important role in fueling accelerated hepatic nitrogen metabolism after burn injury. 相似文献
17.
Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization
下载免费PDF全文

Palmieri L Arrigoni R Blanco E Carrari F Zanor MI Studart-Guimaraes C Fernie AR Palmieri F 《Plant physiology》2006,142(3):855-865
Despite much study of the role of S-adenosylmethionine (SAM) in the methylation of DNA, RNA, and proteins, and as a cofactor for a wide range of biosynthetic processes, little is known concerning the intracellular transport of this essential metabolite. Screening of the Arabidopsis (Arabidopsis thaliana) genome yielded two potential homologs of yeast (Saccharomyces cerevisiae) and human SAM transporters, designated as SAMC1 and SAMC2, both of which belong to the mitochondrial carrier protein family. The SAMC1 gene is broadly expressed at the organ level, although only in specialized tissues of roots with high rates of cell division, and appears to be up-regulated in response to wounding stress, whereas the SAMC2 gene is very poorly expressed in all organs/tissues analyzed. Direct transport assays with the recombinant and reconstituted SAMC1 were utilized to demonstrate that this protein displays a very narrow substrate specificity confined to SAM and its closest analogs. Further experiments revealed that SAMC1 was able to function in uniport and exchange reactions and characterized the transporter as highly active, but sensitive to physiologically relevant concentrations of S-adenosylhomocysteine, S-adenosylcysteine, and adenosylornithine. Green fluorescent protein-based cell biological analysis demonstrated targeting of SAMC1 to mitochondria. Previous proteomic analyses identified this protein also in the chloroplast inner envelope. In keeping with these results, bioinformatics predicted dual localization for SAMC1. These findings suggest that the provision of cytosolically synthesized SAM to mitochondria and possibly also to plastids is mediated by SAMC1 according to the relative demands for this metabolite in the organelles. 相似文献
18.
L-Leucine is cotransported with H+ in the plasma membrane of Chang liver cells (Mitsumoto, Y. et al. (1986) J. Biol. Chem. 261, 4549). The leucine transport system was solubilized from the plasma membrane of the cells with ocytl glucoside and reconstituted in proteoliposomes prepared by a rapid dilution of a mixture of the solubilized proteins, octyl glucoside and liposomes. The proteoliposomes exhibited H(+)-gradient and electrical potential-stimulated leucine uptake. The H(+)-gradient-stimulated leucine uptake could be completely inhibited by carbonyl cyanide p-trifluoro-methoxyphenylhydrazone (FCCP) and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH). The stimulatory effect of H+ gradient on leucine uptake was shown to be mainly due to decrease of the Km, but not to change of the Vmax, of the transport kinetics. These results suggest that the leucine-H+ cotransporter is solubilized and reconstituted into proteoliposomes. 相似文献
19.
Glycosylation of glycoproteins, proteoglycans, and glycolipids occurring in the Golgi apparatus requires the translocation of nucleotide sugars from the cytosol into the lumen of the Golgi. Translocation is mediated by specific nucleotide sugar transporters, integral Golgi membrane proteins that regulate the above glycosylation reactions. A defect in GDP-fucose transport into the lumen of the Golgi apparatus has been recently identified in a patient affected by leukocyte adhesion deficiency type II syndrome (Lubke, T., Marquardt, T., von Figura, K., and Korner, C. (1999) J. Biol. Chem. 274, 25986-25989). We have now identified and purified the rat liver Golgi membrane GDP-fucose transporter, a protein with an apparent molecular mass of 39 kDa, by a combination of column chromatography, native functional size determination on a glycerol gradient, and photoaffinity labeling with 8-azidoguanosine-5'-[alpha-(32)P] triphosphate, an analog of GDP-fucose. The purified transporter appears to exist as a homodimer within the Golgi membrane. When reconstituted into phosphatidylcholine liposomes, it was active in GDP-fucose transport and was specifically photolabeled with 8-azidoguanosine-5'-[alpha-(32)P]triphosphate. Transport was also stimulated 2-3-fold after preloading proteoliposomes with GMP, the putative antiporter. 相似文献
20.
Cloning and functional expression of ATA1, a subtype of amino acid transporter A, from human placenta 总被引:7,自引:0,他引:7
Wang H Huang W Sugawara M Devoe LD Leibach FH Prasad PD Ganapathy V 《Biochemical and biophysical research communications》2000,273(3):1175-1179
This report describes the primary structure and functional characteristics of human ATA1, a subtype of the amino acid transport system A. The human ATA1 cDNA was isolated from a placental cDNA library. The cDNA codes for a protein of 487 amino acids with 11 putative transmembrane domains. The transporter mRNA ( approximately 9.0 kb) is expressed most prominently in the placenta and heart, but detectable level of expression is evident in other tissues including the brain. When expressed heterologously in mammalian cells, the cloned transporter mediates Na(+)-coupled transport of the system A-specific model substrate alpha-(methylamino)isobutyric acid. The transport process is saturable with a Michaelis-Menten constant of 0. 89 +/- 0.12 mM. The Na(+):amino acid stoichiometry is 1:1 as deduced from the Na(+)-activation kinetics. The transporter is specific for small short-chain neutral amino acids. The gene for the transporter is located on human chromosome 12. 相似文献