首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association and interaction of plectin (Mr 300,000) with intermediate filaments and filament subunit proteins were studied. Immunoelectron microscopy of whole mount cytoskeletons from various cultured cell lines (rat glioma C6, mouse BALB/c 3T3, and Chinese hamster ovary) and quick-frozen, deep-etched replicas of Triton X-100-extracted rat embryo fibroblast cells revealed that plectin was primarily located at junction sites and branching points of intermediate filaments. These results were corroborated by in vitro recombination studies using vimentin and plectin purified from C6 cells. Filaments assembled from mixtures of both proteins were extensively crosslinked by oligomeric plectin structures, as demonstrated by electron microscopy of negatively stained and rotary-shadowed specimens as well as by immunoelectron microscopy; the binding of plectin structures on the surface of filaments and cross-link formation occurred without apparent periodicity. Plectin's cross-linking of reconstituted filaments was also shown by ultracentrifugation experiments. As revealed by the rotary-shadowing technique, filament-bound plectin structures were oligomeric and predominantly consisted of a central globular core region of 30-50 nm with extending filaments or filamentous loops. Solid-phase binding to proteolytically degraded vimentin fragments suggested that plectin interacts with the helical rod domain of vimentin, a highly conserved structural element of all intermediate filament proteins. Accordingly, plectin was found to bind to the glial fibrillar acidic protein, the three neurofilament polypeptides, and skin keratins. These results suggest that plectin is a cross-linker of vimentin filaments and possibly also of other intermediate filament types.  相似文献   

2.
Mechanisms of actin rearrangements mediating platelet activation.   总被引:22,自引:6,他引:16       下载免费PDF全文
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1 micron in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-microns-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-microns-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A comparative study of the susceptibility of vimentin and nuclear lamins from cultured Ehrlich ascites tumor (EAT) cells to degradation by Ca2+ -activated neutral thiol proteinase (calpain) has been undertaken. While pure vimentin was degraded very quickly at physiological ionic strength by purified calpain, isolated lamin B was digested comparatively slowly and purified lamins A/C were fairly resistant to proteolytic degradation. Similar digestion patterns were obtained from vimentin and lamin B with intermediary breakdown products close in size to the corresponding alpha-helical rod domains. To exclude the possibility that the low susceptibility of isolated lamins to Ca2+-dependent proteolytic degradation was due to irreversible denaturation during their isolation and purification, Triton cytoskeletons were prepared and their nuclear lamina as well as vimentin filaments were exposed to relatively large quantities of purified calpain. Under these conditions, not only vimentin filaments but also lamins A and B were digested while lamin C remained intact to a high degree. The major breakdown products of vimentin and lamins were identified as polypeptides which were 35 to 45 amino acids longer than the corresponding alpha-helical rod domains. Most of the vimentin-derived material and all high molecular weight polypeptides originating from lamins remained associated with the Triton cytoskeletons as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with immunoblotting. Indirect immunofluorescence and electron microscope analysis of the calpain-digested Triton cytoskeletons revealed that they still contained a laminalike structure around the nuclear chromatin and numerous structurally altered intermediate filaments in the cytoplasmic remnant, although all vimentin had been degraded with the formation of 40/41 kDa polypeptides as major digestion products. In untreated Triton cytoskeletons, the vimentin filaments seemed to be in direct physical contact with the nuclear lamina, whereas in digested Triton cytoskeletons there was a distinct gap between structurally altered filaments and the nuclear surface. This shows that vimentin filaments and the nuclear lamina are differentially susceptible to degradation by calpain under certain ionic conditions and suggests that both filamentous structures are intimately associated with each other.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In this report I describe a new protein, defined by a monoclonal antibody, which is associated with vimentin filaments in a variety of cultured cells and in skeletal muscle. By immunofluorescence it is absent in smooth muscle, in cells without vimentin, and in neural vimentin containing cells. This protein has a molecular weight of 44,500, a pl of 5, a two-dimensional tryptic peptide fingerprint pattern different from vimentin, is unrelated to actin by Cleveland peptide analysis and by light and electron microscopy, and is not recognized by either a polyclonal antivimentin antibody (Frank, E.D., and L. Warren, 1981, Proc. Natl. Acad. Sci. USA, 78:3020-3024) or a monoclonal antibody against all classes of intermediate filaments (Pruss, R.M., R. Mirsky, M.C. Raff, R. Thorpe, A.J. Dowding, and B.H. Anderton, 1981, Cell, 27:419-428). The protein is resistant to nonionic detergent extraction, is soluble in high salt and can thus be removed from vimentin filaments, but fragments with vimentin in either low salt or anionic detergent and collapses with vimentin in colchicine-treated cells. By light microscopy, the distribution of the protein is indistinguishable from vimentin filaments and appears uniform along them. In contrast, immunoferritin electron microscopy reveals that the molecule is distributed in an intermittent pattern on vimentin filaments. Adopting the terminology of Granger and Lazarides (1980, Cell, 30:263-275), the molecule is called epinemin, meaning "upon filaments."  相似文献   

5.
The authors examined the molecular organization of myosin in stress fibers (microfilament bundles) of cultured mouse embryo fibroblasts. To visualize the organization of myosin filaments in these cells, fibroblast cytoskeletons were treated with gelsolin-like protein from bovine brain (hereafter called brain gelsolin), which selectively disrupts actin filaments. As shown earlier [Verkhovsky et al., 1987], this treatment did not remove myosin from the stress fibers. The actin-free cytoskeletons then were lightly sonicated to loosen the packing of the remaining stress fiber components and fixed with glutaraldehyde. Electron microscopy of platinum replicas of these preparations revealed dumbbell-shaped structures of approximately 0.28 micron in length, which were identified as bipolar myosin filaments by using antibodies to fragments of myosin molecule (subfragment 1 and light meromyosin) and colloidal gold label. Bipolar filaments of myosin in actin-free cytoskeletons were often organized in chains and lattices formed by end-to-end contacts of individual filaments at their head-containing regions. Therefore, after extraction of actin, it was possible for the first time to display bipolar myosin filaments in the stress fibers of cultured cells.  相似文献   

6.
Adaptors, junction dynamics, and spermatogenesis   总被引:8,自引:0,他引:8  
Adaptors are component proteins of junctional complexes in all epithelia, including the seminiferous epithelium of the mammalian testis. They recruit other regulatory and structural proteins to the site of both anchoring junctions (such as cell-cell actin-based adherens junctions [AJs], e.g., ectoplasmic specialization [ES] and tubulobulbar complex, which are both testis-specific cell-cell actin-based AJ types, and cell-cell intermediate filament-based desmosome-like junctions) and tight junctions (TJ). Furthermore, adaptors per se can be substrates and/or activators of kinases or phosphatases. As such, the integrity of cell junctions and the regulation of junction dynamics during spermatogenesis rely on adaptors for their ability to recruit and link different junctional components to the same site and to tether transmembrane proteins at both anchoring and TJ sites to the underlying cytoskeletons, such as the actin filaments, intermediate filaments, and microtubules. These protein-protein interactions are possible because adaptors are composed of conserved protein binding domains, which allow them to link to more than one structural or signaling protein, recruiting multi-protein complexes to the same site. Herein, we provide a timely review of adaptors recently found at the sites of AJ (e.g., ES) and TJ. In addition, several in vivo models that can be used to delineate the function of adaptors in the testis are described, and the role of adaptors in regulating junction dynamics pertinent to spermatogenesis is discussed.  相似文献   

7.
This report describes the cytoskeleton nature of a 60,000-mol-wt protein, P60, previously shown to undergo Ca2+ influx-induced phosphorylation concomitant with insulin release in hamster insulinoma cells. Four lines of evidence suggest that P60 is an intermediate filament protein of the keratin class. (a) As previously described (Schubart, U.K., 1982, J. Biol. Chem. 257:12231-12238), Triton X-100-insoluble cytoskeletons are enriched for P60; (b) these cytoskeletons contain 7-11-nm filaments as determined by negative staining; (c) immunoblot analysis revealed that all proteins detected in the insulinoma cell cytoskeletons are recognized by a monoclonal antibody that interacts with a common determinant in all intermediate filament proteins; and (d) P60 was shown, by its identical migration on two-dimensional electrophoresis and by its immunologic relatedness, to be analogous to a known keratin present in HeLa cells. An antibody specific for P60, as judged by immunoblotting, was developed in a rabbit. In indirect immunofluorescence studies on insulinoma cells, this anti-P60 antibody produced a filamentous staining pattern. The antibody also permitted the identification of P60 in normal pancreatic islets as determined both by immunoblotting of hamster islet proteins resolved by two-dimensional electrophoresis and by indirect immunofluorescence microscopy on cryostat sections of hamster pancreas. In addition, the antibody recognized an antigen in the epithelial layer of pancreatic exocrine ducts, as determined by indirect immunofluorescence. The data have implications for the embryonic origin of pancreatic islets. Together with the phosphorylation data, these findings suggest that this islet cell cytokeratin may be involved in the regulation of insulin release.  相似文献   

8.
Summary Over the last 25 yr, success in characterizing the individual protein components of animal cytoskeletons was possible, in part, due to technical advances in the isolation and purification of anucleate cytoskeletons from animal cells. As a step towards characterizing protein components of the plant cytoskeleton, we have isolated cytoskeletons from cytoplasts (anucleate protoplasts) prepared from cotton fiber cells grown in ovule culture. Cytoplasts isolated into a hypertonic, Ca2+-free medium at pH 6.8 retained internal structures after extraction with the detergent, Triton X-100. These structures were shown to include microtubule and microfilament arrays by immunofluorescence and electron microscopy. Actin and tubulin were the only abundant proteins in these preparations, suggesting that microfilaments and microtubules were the major cytoskeleta elements in the isolated cytoskeletons. The absence of additional, relatively abundant proteins suggests that (a) other cytoskeletal arrays potentially present in fiber cells (e.g., intermediate filaments) were either lost during detergent extraction or were minor components of the fiber cell cytoskeleton; and (b) high ratios of individual cytoskeletal-associated proteins relative to actin and tubulin were not required to maintain microtubules and microfilaments in organized structures.  相似文献   

9.
Unfertilized Paracentrotus lividus egg cytoskeleton is prepared by mild, nonionic detergent extraction at 4 degrees C in buffer systems containing either 2-methyl-2,4-pentanediol (hexylene glycol) or glycerol. These extractions allow the isolation of cytomatrices that maintain the egg form and are 70-80 micron in diameter. DNase inhibition assays show that actin is in polymerized form in these cytomatrices. Ultrastructural observations reveal that the cytoskeletons are made up essentially of 2 categories of filaments, 7-8-nm and 2-4-nm in diameter, respectively. After heavy meromyosin labelling, short, radiating actin filaments are seen in the cortical region, while longer actin filaments are found in the internal region of these cytomatrices. The 2-4-nm filaments of still unknown biochemical nature are organized in a meshwork. In contrast to results found with fertilized eggs, bundles of actin filaments and microtubules are absent; 8-13-nm filaments are not detected.  相似文献   

10.
Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament “branches” are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural interactions with other cytoskeletal elements. A structural and biochemical comparison of whole cells and cytoskeletons demonstrates that the former show a more inticate three-dimensional network and a more complex biochemical composition than the latter. An analysis of the time course of detergent extraction strongly suggests that the cytoskeleton forms a structural backbone with which a large number of proteins of the cytoplasmic ground substance associate in an ordered fashion to form the characteristic image of the “microtrabecular network” (J.J. Wolosewick and K.R. Porter. 1979. J. Cell Biol. 82: 114-139).  相似文献   

11.
《The Journal of cell biology》1986,103(3):1007-1020
A highly branched filament network is the principal structure in the periphery of detergent-extracted cytoskeletons of macrophages that have been spread on a surface and either freeze or critical point dried, and then rotary shadowed with platinum-carbon. This array of filaments completely fills lamellae extended from the cell and bifurcates to form 0.2-0.5 micron thick layers on the top and bottom of the cell body. Reaction of the macrophage cytoskeletons with anti-actin IgG and with anti-IgG bound to colloidal gold produces dense staining of these filaments, and incubation with myosin subfragment 1 uniformly decorates these filaments, identifying them as actin. 45% of the total cellular actin and approximately 70% of actin-binding protein remains in the detergent-insoluble cell residue. The soluble actin is not filamentous as determined by sedimentation analysis, the DNAase I inhibition assay, and electron microscopy, indicating that the cytoskeleton is not fragmented by detergent extraction. The spacing between the ramifications of the actin network is 94 +/- 47 nm and 118 +/- 72 nm in cytoskeletons prepared for electron microscopy by freeze drying and critical point drying, respectively. Free filament ends are rare, except for a few which project upward from the body of the network or which extend down to the substrate. Filaments of the network intersect predominantly at right angles to form either T-shaped and X-shaped overlaps having striking perpendicularity or else Y-shaped intersections composed of filaments intersecting at 120-130 degrees angles. The actin filament concentration in the lamellae is high, with an average value of 12.5 mg/ml. The concentration was much more uniform in freeze-dried preparations than in critical point-dried specimens, indicating that there is less collapse associated with the freezing technique. The orthogonal actin network of the macrophage cortical cytoplasm resembles actin gels made with actin-binding protein. Reaction of cell cytoskeletons and of an actin gel made with actin- binding protein with anti-actin-binding protein IgG and anti-IgG-coated gold beads resulted in the deposition of clusters of gold at points where filaments intersect and at the ends of filaments that may have been in contact with the membrane before its removal with detergent. In the actin gel made with actin-binding protein, 75% of actin-fiber intersections labeled, and the filament spacing between intersections is consistent with that predicted on theoretical grounds if each added actin-binding protein molecule cross-links two filaments to form an intersection in the gel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Immunofluorescence and phase-contrast microscopic studies of goldfish xanthophores with aggregated or dispersed pigment show two unusual features. First, immunofluorescence studies with anti-actin show punctate structures instead of filaments. These punctate structures are unique for the xanthophores and are absent from both goldfish dermal non-pigment cells and a dedifferentiated cell line (GEM-81) derived from a goldfish xanthophore tumor. Comparison of immunofluorescence and phase-contrast microscopic images with electron microscopic images of thin sections and of Triton-insoluble cytoskeletons show that these punctate structures represent pterinosomes with radiating F-actin. The high local concentration of actin around the pterinosomes results in strong localized fluorescence such that, when the images have proper brightness for these structures, individual actin filaments elsewhere in the cell are too weak in their fluorescence to be visible in the micrographs. Second, whereas immunofluorescence images with anti-tubulin show typical patterns in xanthophores with either aggregated or dispersed pigment, namely, filaments radiating out from the microtubule organizing center, immunofluorescence images with anti-actin or with anti-intermediate filament proteins show different patterns in xanthophores with aggregated versus dispersed pigment. In cells with dispersed pigment, the punctate structures seen with anti-actin are relatively evenly distributed in the cytoplasm, and intermediate filaments appear usually as a dense perinuclear band and long filaments elsewhere in the cytoplasm. In cells with aggregated pigment, both intermediate filaments and pterinosomes with associated actin are largely excluded from the space occupied by the pigment aggregate, and the band of intermediate filaments surrounds not only the nucleus but also the pigment aggregate. The patterns of distribution of the different cytoskeleton components, together with previous results from this laboratory, indicate that formation of the pigment aggregate depends at least in part on the interaction between pigment organelles and microtubules. The possibility that intermediate filaments may play a role in the formation/stabilization of the pigment aggregate is discussed.  相似文献   

13.
This report presents the appearance of rapidly frozen, freeze-dried cytoskeletons that have been rotary replicated with platinum and viewed in the transmission electron microscope. The resolution of this method is sufficient to visualize individual filaments in the cytoskeleton and to discriminate among actin, microtubules, and intermediate filaments solely by their surface substructure. This identification has been confirmed by specific decoration with antibodies and selective extraction of individual filament types, and correlated with light microscope immunocytochemistry and gel electrophoresis patterns. The freeze-drying preserves a remarkable degree of three-dimensionality in the organization of these cytoskeletons. They look strikingly similar to the meshwork of strands or "microtrabeculae" seen in the cytoplasm of whole cells by high voltage electron microscopy, in that the filaments form a lattice of the same configutation and with the same proportions of open area as the microtrabeculae seen in whole cells. The major differences between these two views of the structural elements of the cytoplasmic matrix can be attributed to the effects of aldehyde fixation and dehydration. Freeze-dried cytoskeletons thus provide an opportunity to study--at high resolution and in the absence of problems caused by chemical fixation--the detailed organization of filaments in different regions of the cytoplasm and at different stages of cell development. In this report the pattern of actin and intermediate filament organization in various regions of fully spread mouse fibroblasts is described.  相似文献   

14.
Intermediate filaments are one of the three major cytoskeletons. Some roles of intermediate filaments in cellular functions have emerged based on various diseases associated with mutations of cytokeratins. However, the precise functions of intermediate filament are still unclear. To resolve this, we manipulated intermediate filaments of cultured cells by expressing a mutant cytokeratin. Arginine 89 of cytokeratin18 plays an important role in intermediate filament assembly. The expression of green fluorescent protein-tagged cytokeratin18 arg89cys induced aggregations and loss of the intermediate filament network composed of cytokeratins in liver-derived epithelial cells, Huh7 and OUMS29, but only induced the formation of cytokeratin aggregates and did not affect the intermediate filament network of endogenous vimentin in HEK293. The expression of this mutant affected the distribution of Golgi apparatus and the reassembly of Golgi apparatus after perturbations by nocodazole or brefeldin A in both Huh7 and OUMS29, but not in HEK293. Our data show that loss of the original intermediate filament network, but not the existence of cytokeratin aggregates, induces redistribution of the Golgi apparatus. The original intact intermediate filament network is necessary for the organization of Golgi apparatus.  相似文献   

15.
We have examined the effect of a mercurial sulfhydryl reagent, mersalyl, on the protein composition of cytoskeletons by SDS-polyacrylamide gel electrophoresis after treatment of human platelets with Triton X-100 (Triton) containing mersalyl and Ca2+, and have found that mersalyl alters the protein composition of cytoskeletons in a Ca2+-dependent manner. At 1 X 10(-7) M Ca2+, 0.2 mM mersalyl, which represents approximately the equivalent amount of sulfhydryl of platelet suspensions that we used, specifically made myosin insoluble. The amount of myosin in Triton-mersalyl residues was increased by increasing the Ca2+ concentration of Triton lysis buffer. Actin-binding protein, 235 kDa polypeptide and alpha-actinin-like protein were decreased in Triton residues by mersalyl at Ca2+ concentrations less than 1 X 10(-7) M, while these polypeptides in Triton residues were increased by mersalyl in the presence of more than 2 X 10(-7) M Ca2+. Electron microscopic study revealed the presence of thick filaments with an appearance similar to that of the thick filaments of platelet myosin. Thus, the modification with mersalyl of sulfhydryls of platelet polypeptides along with changes in Ca2+ concentrations within a physiological range leads to changes in solubility of, and filament formation of, myosin, actin and other cytoskeletal proteins.  相似文献   

16.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

17.
Intermediate filaments: a historical perspective   总被引:6,自引:0,他引:6  
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.  相似文献   

18.
Actin filament organization in the fish keratocyte lamellipodium   总被引:17,自引:7,他引:10       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1275-1286
From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.  相似文献   

19.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

20.
The distribution of plectin in the cytoplasm of Rat1 and glioma C6 cells was examined using a combination of double and triple immunofluorescence microscopy and interference reflection microscopy. In cells examined shortly after subcultivation (less than 48 h), filamentous networks of plectin structures, resembling and partially colocalizing with vimentin filaments, were observed as reported in previous studies. In cells kept attached to the substrate without growth for periods of 72 h to 8 days (stationary cultures), thick fibrillary plectin structures were observed. These structures were located at the end of actin filament bundles and showed co-distribution with adhesion plaques (focal contacts), vinculin, and vimentin. Only relatively large adhesion plaques (dash-like contacts) were decorated by antibodies to plectin, smaller dot-like contacts at the cell edges remained undecorated. Moreover, in stationary Rat1 cells plectin structures were found to be predominantly colocalized with actin stress fibers. However, after treatment of such cells with colcemid, plectin's distribution changed dramatically. The protein was no longer associated with actin structures, but was distributed diffusely throughout the cytoplasm. After a similar treatment with cytochalasin B, plectin's association with stress fibers again was completely abolished, although stress fibers were still present. The association of plectin with focal contact-associated intermediate filaments was demonstrated also by immunogold electron microscopy of quick-frozen, deep-etched replicas of rat embryo fibroblasts. These data confirm previous reports suggesting a relationship between intermediate filaments on the one hand, and actin stress fibers and their associated plasma membrane junctional complexes, on the other. Furthermore, the data establish plectin as a novel component of focal contact complexes and suggest that plectin plays a role as mediator between intermediate filaments and actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号