首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat tolerance of 8 temperate- and 1 subtropical-origin C3 species as well as 17 tropical-origin ones, including C3, C4, and CAM species, was estimated using both F0-T curve and the ratio of chlorophyll fluorescence parameters, prior to and after high temperature treatment. When leaves were heated at the rate of ca. 1 °C min−1 in darkness, the critical temperature (Tc) varied extensively among species. The Tc's of all 8 temperate-origin species ranged between 40–46 °C in winter (mean temperature 16–19 °C), and between 32–48 °C in summer (mean temperature ca. 30 °C). Those for 1 subtropical- and 12 tropical-origin C3 species ranged between 25–44 °C and 35–48 °C, and for 1 CAM and 4 C4 species were 41–47 and 45–46 °C, respectively. Acclimating three C3 herbaceous plants at high temperature (33/28 °C, day/night) for 10 d in winter caused their Tc's rising to nearly the values measured in summer. When leaves were exposed to 45 °C for 20 min and then kept at room temperature in darkness for 1 h, a significant correlation between RFv/m (the ratio of Fv/Fm before and after 45 °C treatment) and Tc was observed for all tested temperate-origin C3 species as well as tropical-origin CAM and C4 species. However, F0 and Fv/Fm of the tropical-origin C3 species were less sensitive to 45 °C treatment, regardless of a large variation of Tc; thus no significant correlation was found between their RFv/m and Tc. Thus Tc might not be a suitable index of heat tolerance for plants with wide range of environmental adaptation. Nevertheless, Tc's of tropical origin C3 species, varying and showing high plasticity to seasonal changes and temperature treatment, appeared suitable for the estimation of the degree of temperature acclimation in the same species.  相似文献   

2.
We studied the role of red deer Cervus elaphus L. as ecosystem modifier in boreal forest (Tingvoll municipality, 62°52′ N, 8°20′ E, Norway), during early summer of 2001. The effect of grazing by red deer on ground beetles (Carabidae) abundance and diversity was investigated across a gradient of grazing pressures. We trapped ground beetles by pit-fall traps from three homogeneous winter grazing areas (ungrazed, medium grazed, heavily grazed). Bilberry Vaccinium myrtillus (the main winter food for red deer) was sampled and its dry weight was measured for the three locations. Gradient analyses showed that grazing by red deer affects carabid species composition. Grazing significantly affected the amount of bilberry, which correlated with species variation. According to our predictions, we found a higher abundance of carabids in the heavily grazed location, but the species richness and the diversity indices were similar for the three areas. This study shows that overall species composition is altered along a gradient as consequence of red deer winter grazing and that red deer act as ecosystem engineer, by reducing the bilberry heather which dominates the field layer in early summer.  相似文献   

3.
Metabolic rates of four resting, post-absorptive male adult summer- and winter-adapted captive arctic foxes (Alopex lagopus) were recorded. Basal metabolic rates (BMR) varied seasonally with a 36% increase from winter to summer, while body mass was reduced by 17% in the same period. The lower critical temperature (T 1c) of the winter-adapted arctic fox was estimated to −7°C, whereas T lc during summer was 5°C. The similarity of these values, which are much higher than hitherto assumed (e.g. Scholander et al. 1950b), is mainly due to a significantly (P<0.05) lower BMR in winter than in summer. Body core (stomach) temperature was stable, even at ambient temperatures as low as −45°C, but showed a significant (P<0.05) seasonal variation, being lower in winter (39.3±0.33°C) than in summer (39.8±0.16°C). The thermal conductivity of arctic fox fur was the same during both seasons, whereas the thermal conductance in winter was lower than in summer. This was reflected in an increase in fur thickness of 140% from summer to winter, and in a reduced metabolic response to ambient temperatures below T lc in winter. Another four arctic foxes were exposed to three periods of forced starvation, each lasting 8 days during winter, when body mass is in decline. No significant reduction in mass specific BMR was observed during the exposure to starvation, and respiratory quotient was unchanged at 0.73±0.02 during the first 5 days, but dropped significantly (P<0.05) to 0.69±0.03 at day 7. Locomotor activity and body core (intraperitoneal) temperature was unaltered throughout the starvation period, but body mass was reduced by 18.5±2.1% during these periods. Upon re-feeding, locomotor activity was significantly (P<0.05) reduced for about 6 days. Energy intake was almost doubled, but stabilised at normal levels after 11 days. Body mass increased, but not to the level before the starvation episodes. Instead, body mass increased until it reached the reduced body mass of ad libitum fed control animals. This indicates that body mass in the arctic fox is regulated according to a seasonally changing set point.  相似文献   

4.
Prey preference and egg production of the carabid beetleAgonum dorsale   总被引:3,自引:0,他引:3  
In order to elucidate whether the aphidRhopalosiphum padi is low quality food for the carabid beetleAgonum dorsale, as it has previously been found to be for cereal spiders, we performed a series of experiments using fruit fliesDrosophila melanogaster as a standard alternative prey (‘control prey’): 1) Prey preference, 2) Aphid consumption for satiated and starved beetles, 3) Egg production on different diets and 4) Preference experiments with fruit flies coated with a taste of different prey types. Other alternative prey types used were earthworms and sciarid midges, all potential prey in the field.A. dorsale has a low preference for aphids compared to fruit flies. Apparently there is an upper limit to the consumption of aphids independent of hunger and much below the beetles' total food demand. Egg production on a pure diet of aphids is lower than on a pure diet of fruit flies; it is extremely low on a pure diet of earthworms; the highest fecundity is found on a mixed diet. As fruit flies coated with a taste of aphids or sciarid midges are less prefered than flies covered with a taste of fruit flies there may be a chemical factor, acting through taste, involved in determining prey preference.  相似文献   

5.
Feeding rate, the rate of movement of food through the gut and gut morphology of large larvae of five caddis species (Halesus radiatus, Hydropsyche instabilis, Polycentropus kingi, Rhyacophila dorsalis and Potamophylax cingulatus) were investigated in the laboratory. Following 72 hr starvation, P. cingulatus and H. radiatus larvae became satiated (refused prey offered directly to the mouthparts) after consuming 8–11 and 9–13 mayfly nymphs (Baetis rhodani, 3.5–4.6 mm) respectively. Hunger level affected prey consumption. In P. cingulatus, the number of prey consumed over 24 h (at 9.5–12 °C) increased with starvation periods from 0–72 h, but declined following longer starvation periods. Six clearly recognisable gut states (defined by the position of food material in various parts of the gut) can be identified at different times since commencement of a meal. As environmental temperature increased (from 8–12 °C to 15–17 °C), the rate of change of the gut state increased and the food retention time decreased in all species. Feeding periodicity (i.e. nocturnal/diurnal activity) in the field was estimated based on the evacuation rate and the gut state and environmental temperature at the known time of collection. Initiation of consumption of prey appeared to coincide with emptying of the foregut and proximal midgut, whereas actual feeding continued until complete satiation when some threshold fullness of the foregut had been reached. The length of time food was held in the foregut was positively correlated with increasing specialisation of the foregut (particularly elaboration of the proventriculus).  相似文献   

6.
The striped flea beetle, Phyllotreta undulata Kutschera (Coleoptera: Chrysomelidae), is a pest of cruciferous crops. It overwinters as an adult. During winter in northern European countries, such as Estonia, it is subject to sometimes severe temperatures that may fluctuate daily, over the season, and between seasons. The objective of this study was to investigate factors that affect its cold hardiness. In a series of five experiments, the effects of food plant, starvation, and acclimatization on the beetles’ ability to supercool and survive exposure to sub‐zero temperatures was investigated. The supercooling points (SCP) of overwintered beetles field‐collected from white mustard and Indian mustard differed from those caught from white cabbage and oilseed rape, but these differences disappeared after a 4‐day period of starvation at room temperature, indicating that gut content probably influences the potential to supercool. The duration and temperature of acclimation affected SCP in overwintered beetles. The decrease in SCP was more rapid at 22 °C than at 0 °C, probably because of faster dehydration and gut evacuation at the higher temperature. Acclimation at 0 °C for a week increased the ability of overwintered beetles to survive sub‐zero temperatures, lowering both SCP and lower lethal temperature (LLT50). Some pre‐freeze mortality occurred; SCP and LLT50 were correlated but the latter was a constant 3 °C higher than the former. The SCP of field‐collected pre‐winter beetles decreased gradually during the autumn. It also decreased when field‐collected pre‐winter beetles were acclimated at 0 °C in the laboratory, attaining its lowest level after 18 days. Phyllotreta undulata is well‐adapted to unstable and sometimes severe winter conditions; its high potential to supercool enhances its cold hardiness and ability to survive short periods at sub‐zero temperatures although it cannot survive freezing of its body fluids.  相似文献   

7.
Progeny production increased and adult longevity decreased with rising temperature within the range 18°C to 30°C for the 3 mealybug parasitoidsAnagyrus pseudococci (Girault),Leptomastix dactylopii Howard andLeptomastidea abnormis (Girault). The Weibull distribution gave a good fit to survival curves for the 3 parasitoids and statistical comparison of Weibullb andc parameters at different temperatures allowed changes in the scale and shape of the curves to be detected. In general, ♀♀ lived longer than ♂♂ for all 3 species, except at high temperature. FemaleL. abnormis attained their maximum progeny production at 24°C and maintained this level up to 34°C. They lived longer than the other 2 parasitoid species at 30°C and showed a type I survival curve throuhout the range of temperatures examined.A. pseudococci andL. dactylopii both required high temperatures (30°C) to attain their maximal progeny production, but werepseudococci tended towards type II, with a larger proportion of the population dying within the first few days.L. dactylopii lived longest at 26°C, with ♀♀ showing a type I survival curve at all temperatures and ♂ survival curves changing from type I to type II at 30°C. The implications of these findings for the population dynamics of the different parasitoids are briefly discussed.   相似文献   

8.
Little is known about how animals from tropical and subtropical climates adjust their energy expenditure to cope with seasonal changes of climate and food availability. To provide such information, we studied the thermal physiology, torpor patterns and energetics of the nocturnal blossom-bat (Syconycteris australis 18 g) from a subtropical habitat in both summer and winter. In both seasons, S. australis frequently entered daily torpor at ambient temperatures between 12 and 25°C when food and water were withheld. Unlike patterns observed in temperate animals, mean minimum metabolic rates during torpor were lower in summer (0.47 ± 0.07 ml O2 g−1 h−1) than in winter (0.75 ± 0.11 ml O2 g−1 h−1). Body temperatures during torpor were regulated at 19.3 ± 1.0°C in summer and at 23.4 ± 2.0°C in winter. Torpor bout duration was significantly longer in summer (7.3 ± 0.6 h) than in winter (5.5 ± 0.3 h), but in both seasons, bout duration was not affected by ambient temperature. Consequently, average daily metabolic rates were also significantly lower in summer than in winter. Body temperatures and metabolic rates in normothermic bats did not change with season. Our findings on seasonal changes of torpor in this bat from the subtropics are opposite to those made for many species from cold climates which generally show deeper and longer torpor in winter and are often entirely homeothermic in summer. More pronounced torpor in subtropical S. australis in summer may be due to low or unpredictable nectar availability, short nights which limit the time available for foraging, and long days without access to food. Thus, the reversed seasonal response of this subtropical bat in comparison to temperate species may be an appropriate response to ecological constraints. Received: 6 May 1997 / Accepted: 19 October 1997  相似文献   

9.
Egg period was compared among several temperature conditions (11°C, 16°C, 20°C, 23°C) in Sweltsa sp., Stavsolus japonicus, and Isoperla aizuana (Plecoptera). The shortest mean egg incubation period was 27.8 days at 20°C in Sweltsa sp., 118.1 days at 16°C in Stavsolus japonicus, and 162.0 days at 20°C in Isoperla aizuana on average. Egg hatching rate was also the highest at the water temperature that provided the shortest egg incubation period. Based on laboratory data, eggs of Sweltsa sp. were considered to be deposited in May and hatched in June in the field. Thus, they must have spent the summer as nymphs in the field. Eggs of Stavsolus japonicus and Isoperla aizuana were considered to be deposited in April to May and hatched in September to October in the field. Visible eyes of Stavsolus japonicus and Isoperla aizuana appeared in August. It is likely that the long egg period of Stavsolus japonicus and Isoperla aizuana reflects that these two species spend the summer as dormant eggs in the field.  相似文献   

10.
Abstract Carrion beetles (Nicrophorus spp.) use small vertebrate carcasses for food and reproduction. Their ecology and behaviors are highly affected by the availability of carcasses and the surrounding environmental conditions. Our results revealed that in subtropical Fushan, northern Taiwan, N. nepalensis was mainly active in spring (February to May), and could also be found in autumn (October and November); but there was no capture record in summer (June to September) and winter (December and January). A laboratory temperature tolerance study indicated that N. nepalensis adults become inactive at temperatures above 26°C, and had the highest mortality when the temperature was raised from 27°C to 28°C. Furthermore, N. nepalensis became sexually mature at 20°C, depending on the photoperiod: the longer the day, the lower the percentage of sexually mature 2‐week‐old females after emergence. In another experiment, N. nepalensis virgins were paired under three possible conditions at Fushan. At 15°C and 20°C, if carcasses were presented to the pairs within 3 days after emergence, all laid eggs in the second week after emergence. If carcasses were presented 1 week after emergence, most began to reproduce at 20°C with 12.5 h of daylight. However, at 15°C with 11 h of daylight, the carrion beetles hibernated first, and reproduced in the ninth week after emergence. At 25°C with 14 h of daylight, carrion beetles did not bury the mouse carcasses, the females did not lay eggs, and the adult lifespan was only one‐third of that at 20°C. This study revealed that both photoperiod and temperature influence the time needed to reach the sexual maturity of N. nepalensis; and also implied that the narrow temperature tolerance range and dormancy behavior of carrion beetles are highly regulated by those environmental factors.  相似文献   

11.
We studied in batch reactors the kinetics and characterization of 70 °C, volatile fatty acids (VFAs)-grown, upflow anaerobic sludge blanket granular sludge with 55 and 35 °C sludge as reference. The half-saturation constant (K s), the inhibition constant (K i), the maximum specific methane production rate (μCH4max), and the inhibition response coefficient (n) of the 70 °C sludge were 6.15 mM, 48.2 mM, 0.132 h−1, and 2.48, respectively, while no inhibition occurred at 55 and 35 °C, where the K s was 3.67 and 3.82 mM, respectively. At 70 °C, the highest initial specific methanogenic activity (ISMA, 0.311 gCH4-COD per gram volatile solids per day) on VFAs was about 12–15% lower than that on acetate and three to four times less than the ISMA for the 55 and 35 °C sludge. In the acetate conversion study, residual acetate (79 mg l−1) at 70 °C was three to five times higher than that at 55 and 35 °C. Further, the methane produced as percentage of the acetate consumed at 70 °C (89%) was lower than that at 55 (95%) and 35 °C (97%). At 70 °C, 10% of the ISMA remained after 15 days of starvation as compared to 26% (55 °C) and 92% (35 °C) after 30 days of starvation. Thus, the kinetics of the 70 °C granular sludge seem to differ from those at 55 and 35 °C. Received: 1 February 1999 / Accepted: 20 March 1999  相似文献   

12.
Jie Song  Gu Feng  Fusuo Zhang 《Plant and Soil》2006,279(1-2):201-207
The effects of three salinities (0, 100 and 500 mM NaCl) and four constant temperatures (10, 20, 30 and 35 °C) on seed germination of Halostachys caspica (M. B.) C. A. Mey., Kalidium foliatum (Pall.) Mop. and Halocnemum strobilaceum (Pall.) Bieb. were investigated. After seeds were treated with different concentrations of NaCl at constant temperatures of 10–35 °C for 16 days, ungerminated seeds were transferred to distilled water for 10 days to investigate the total germination; after this time, the ungerminated seeds from the 10 and 20 °C treatments were then moved to 35 °C for another 5 days to determine the final germination. The three plant species in the present experiment are salt-resistant euhalophytes growing in high saline soils in the Zhungur Basin in Xinjiang, a northwest province of China.Compared with germination under control conditions, germination percentages of all three species were not affected by 100 mM NaCl at 10–35 °C, while severely inhibited by 500 mM NaCl; germination percentages were very low at 10 °C up to 100 mM NaCl for all species; the optimum temperature for germination of H. caspica and K. foliatum was 20–30 °C, while 35 °C for H. strobilaceum, up to 100 mM NaCl; seeds did not suffer ion toxicity for all species, as evidenced by the high total germination after ungerminated seeds pretreated with 500 mM NaCl were transferred to distilled water at constant temperatures of 10–35 °C for 10 days, and the high final germination after the ungerminated seeds from the 10 and 20 °C treatments were subsequently moved to 35 °C for another 5 days; Halostachys caspica had greater sensitivity to increasing temperatures from 10 and 20 °C to 35 °C compared with the other two species.  相似文献   

13.
This study compares the thermal ecology of male bearded dragon lizards (Pogona barbata) from south-east Queensland across two seasons: summer (1994–1995) and autumn (1995). Seasonal patterns of body temperature (T b) were explored in terms of changes in the physical properties of the thermal environment and thermoregulatory effort. To quantify thermoregulatory effort, we compared behavioral and physiological variables recorded for observed lizards with those estimated for a thermoconforming lizard. The study lizards' field T bs varied seasonally (summer: grand daily mean (GDM) 34.6 ± 0.6°C, autumn: GDM 27.5 ± 0.3°C) as did maximum and minimum available operative temperatures (summer: GDM T max 42.1 ± 1.7°C, T min 32.2 ± 1.0°C, autumn: GDM T max 31.7 ± 1.2°C, T min 26.4 ± 0.5°C). Interestingly, the range of temperatures that lizards selected in a gradient (selected range) did not change seasonally. However, P. barbata thermoregulated more extensively and more accurately in summer than in autumn; lizards generally displayed behaviors affecting heat load nonrandomly in summer and randomly in autumn, leading to the GDM of the mean deviations of lizards' field T bs from their selected ranges being only 2.1 ± 0.5°C in summer, compared to 4.4 ± 0.5°C in autumn. This seasonal difference was not a consequence of different heat availability in the two seasons, because the seasonally available ranges of operative temperatures rarely precluded lizards from attaining field T bs within their selected range, should that have been the goal. Rather, thermal microhabitat distribution and social behavior appear to have had an important influence on seasonal levels of thermoregulatory effort. Received: 28 April 1997 / Accepted: 29 December 1997  相似文献   

14.
The data are obtained on development time at six constant temperatures (12, 14, 16, 18, 20, 22°C) and thermal requirements for preimaginal development in a ground beetle Amara communis from Arkhangelsk (64°34′N) and St. Petersburg (59°53′N). The larval and pupal development times were found to be significantly shorter in the Arkhangelsk than in the St. Petersburg population under all temperatures. As a result, total preimaginal development appeared to be shorter by 6.2–6.6% in the Arkhangelsk population. The regression lines of the larval, pupal and total (egg-to-adult) development rate on temperature for the Arkhangelsk population run above and steeper than the respective lines for the St. Petersburg population. Both populations share the similar values of the thermal thresholds (7.2–8.2°C). This explains faster preimaginal development in the northern population under all temperatures above the threshold. Thus, the slope of the regression lines increases, i.e., the sum of degree-days decreases, whereas the thermal threshold for development exhibited no distinctive changes from south to north in this species. Adults from Arkhangelsk reared in the experiments appeared heavier on the average in comparison with those from St. Petersburg, especially at 18–22°C. Temperature did not significantly affect adult weight, except the fact that the beetles were slightly heavier at 20 and 22°C. Consequently, the well-known “temperature-size rule” is violated in this species. Relative growth rate in larvae of A. communis increased considerably with temperature rise from 14 to 22°C. It was significantly higher in the beetles from Arkhangelsk at 18–22°C. There were no differences in larval growth rate between the two populations at 14 and 16°C.  相似文献   

15.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

16.
Metabolic responses to prolonged food shortage (35 days) and subsequent re‐feeding (14 days) were investigated in adults of an introduced beetle, Alphitobius diaperinus Panzer, as a function of temperature (12, 16, 20 and 24 °C). Various qualitative and quantitative changes that greatly vary according to the temperature experienced occurred in metabolite levels during prolonged starvation. Whereas levels of protein and ATP did not change significantly, triglycerides decreased markedly and glycogen changed little. Metabolite levels were differently affected by temperature, with triglycerides being less rapidly degraded at 20 than at 24 °C and almost completely depleted at 12 and 16 °C; in contrast to higher temperatures, glycerol is accumulated at 12 °C. Physiological adaptation to starvation and low temperatures are highly linked and energy allocation for starvation vs. temperature acclimation must be strictly regulated, both being essential for insect survival. Re‐synthesis rates during recovery are probably highly temperature‐dependent for all metabolites. The proteins retained during starvation and the preferential degradation of lipids allowed a rapid recovery. Above 16 °C, adult A. diaperinus regained locomotory activity rapidly and the triglyceride, glycerol and glycogen reserves were restored. This tropical species may be able to colonize other environments such as natural and/or artificial biotopes where conditions are close to those of its natural habitat.  相似文献   

17.
Energy crises, global warming, and climatic changes call for technological and commercial advances in manufacturing high-quality transportation fuels from unconventional feedstocks. Microalgae is one of the most promising sources of biofuels due to the high yields attained per unit area and because it does not displace food crops. Neochloris oleabundans (Neo) microalga is an important promising microbial source of single-cell oil (SCO). Different experimental growth and lipid production conditions were evaluated and compared by using optical density (540 nm), dry-weight determination, and flow cytometry (FC). Best Neo average biomass productivity was obtained at 30°C under conditions of nitrogen-sufficiency and CO2 supplementation (N+/30°C/CO2), with an average doubling time of 1.4 days. The second and third highest productivities occurred with N-sufficient cultures without CO2 supplementation at 26°C (N+/26°C) and at 30°C (N+/30°C), with doubling times of 1.7 and 2.2 days, respectively. Microbial lipid production was monitored by flow cytometry using Nile red (NR), a lipophilic fluorochrome that possesses several advantageous characteristics for in situ screening near real time (at line). Results showed maximum lipid content (56%) after 6 days of nitrogen depletion under nitrogen starvation without CO2 supplementation (N−/30°C), followed by N−/30°C/CO2 and N−/26°C conditions with 52% lipid content, after 5 and 6 days of N starvation, respectively. The adequate fatty acid profile and iodine value of Neo lipids reinforced this microalga as a good source of SCO, in particular for use as biodiesel.  相似文献   

18.
1. The effect of temperature on the outcome of resource competition between two planktonic rotifers (Synchaeta pectinata and Brachionus calyciflorus) was investigated in laboratory experiments. In addition to the competition experiments, several physiological variables and their temperature‐dependence were characterised, including ingestion rate and starvation tolerance. 2. Because of a lower threshold food level (TFL) for population growth for the food algae Cryptomonas erosa, Synchaeta was predicted to be the superior competitor at low temperatures (12 °C). In contrast, Brachionus had a lower TFL at 20 °C and was predicted to be competitively superior at this temperature. 3. In both rotifer species, ingestion rates increased with temperature, but the increase was much more pronounced in Brachionus. Ingestion rates of Brachionus at temperatures from 8 to 24 °C were always higher than in Synchaeta (up to 4.6‐fold). 4. Starvation resistance reduced with temperature in both rotifer species. At all temperatures investigated (12, 16 and 20 °C) Brachionus could survive starvation for longer than Synchaeta. This difference was strongest at 12 °C (5.8 days versus 2.5 days). 5. In the first competition experiment, food was supplied at 48 h‐intervals. Brachionus displaced Synchaeta at both experimental temperatures (12 and 20 °C). Competitive exclusion of Synchaeta at the lower temperature was probably because of large fluctuations in algal densities that resulted from the long intervals between feeding, a condition that favoured Brachionus because of its higher starvation resistance. 6. In the second competition experiment, one third of the food suspension was renewed every 8 h, resulting in a much better approximation to a continuous resource supply. At 12 °C Synchaeta and Brachionus coexisted for more than 1 month and the densities of both rotifer species were significantly lower in the presence of their competitor. In contrast to expectations, Brachionus was able to persist even when Cryptomonas concentrations fell below its TFL. This was probably because Brachionus was using detritus and associated bacteria as additional food sources, which were present in the cultures during the later phase of the experiment. 7. Autocorrelation analysis of the temporal changes in egg ratios revealed significant periodic cycles in Synchaeta during the second competition experiment. A possible explanation for this is the fecundity schedule of Synchaeta, in which reproduction is highly concentrated in a few age classes. According to demographic theory, such a life cycle feature can cause slower convergence to a stable age distribution.  相似文献   

19.
Eggs of two small Australian lizards, Lampropholis guichenoti and Bassiana duperreyi, were incubated to hatching at 25 °C and 30 °C. Incubation periods were significantly longer at 25 °C in both species, and temperature had a greater effect on the incubation period of B. duperreyi (41.0 days at 25 °C; 23.1 days at 30 °C) than L. guichenoti (40.1 days at 25 °C; 27.7 days at 30 °C). Patterns of oxygen consumption were similar in both species at both temperatures, being sigmoidal in shape with a fall in the rate of oxygen consumption just prior to hatching. The higher incubation temperature resulted in higher peak and higher pre-hatch rates of oxygen consumption in both species. Total amount of oxygen consumed during incubation was independent of temperature in B. duperreyi, in which approximately 50 ml oxygen was consumed at both temperatures, but eggs of L. guichenoti incubated at 30 °C consumed significantly more (32.6 ml) than eggs incubated at 25 °C (28.5 ml). Hatchling mass was unaffected by either incubation temperature or the amount of water absorbed by eggs during incubation in both species. The energetic production cost of hatchling B. duperreyi (3.52 kJ · g−1) was independent of incubation temperature, whereas in L. guichenoti the production cost was greater at 30 °C (4.00 kJ · g−1) than at 25 °C (3.47 kJ · g−1). Snout-vent lengths and mass of hatchlings were unaffected by incubation temperature in both species, but hatchling B. duperreyi incubated at 30 °C had longer tails (29.3 mm) than those from eggs incubated at 25 °C (26.2 mm). These results indicate that incubation temperature can affect the quality of hatchling lizards in terms of embryonic energy consumption and hatchling morphology. Accepted: 27 January 2000  相似文献   

20.
Supercooling points, lower lethal temperatures, and the effect of short-term exposures to low temperatures were examined during both winter and summer in the adults of six weevil species from three different habitats on Marion Island. Upper lethal limits and the effects of short-term exposure to high temperatures were also examined in summer-acclimatized adult individuals of these species. Bothrometopus elongatus, B. parvulus, B. randi, Ectemnorhinus marioni, and E. similis were freeze tolerant, but had high lower lethal temperatures (−7 to −10°C). Seasonal variation in these parameters was not pronounced. Physical conditions of the habitat appeared to have little effect on cold hardiness parameters because the Ectemnorhinus species occur in very wet habitats, whereas the Bothrometopus species inhabit drier areas. The adults of these weevil species are similar to other high southern latitude insects in that they are freeze tolerant, but with high lower lethal temperatures. In contrast, Palirhoeus eatoni, a supra-littoral species, avoided freezing and had a mean supercooling point of −15.5 ± 0.94°C (SE) in winter and −11.8 ± 0.98°C in summer. Survival of a constant low temperature of −8°C also increased in this species from 6 h in summer to 27 h in winter. It is suggested that this strategy may be a consequence of the osmoregulatory requirements imposed on this species by its supra-littoral habitat. Upper lethal temperatures (31–34°C) corresponded closely with maximum microclimate temperatures in all of the species. This indicates that the pronounced warming, accompanied by the increased insolation that has been recorded at Marion Island, may reduce survival of these species. These effects may be compounded as a consequence of predation by feral house mice on the weevils. Received: 4 February 1997 / Accepted: 3 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号