共查询到17条相似文献,搜索用时 7 毫秒
1.
2.
LH activation of the epidermal growth factor receptor/RAS/ERK1/2 pathway is essential for ovulation and luteinization because granulosa cell (GC) depletion of ERK1/2 (ERK1/2(gc)(-/-) mice) renders mice infertile. As mediators of ERK1/2-dependent GC differentiation, the CCAAT/enhancer-binding proteins, (C/EBP)α and C/EBPβ, were also disrupted. Female Cebpb(gc)(-/-) mutant mice, but not Cebpa(gc)(-/-) mice, were subfertile whereas Cebpa/b(gc)(-/-) double-mutant females were sterile. Follicles failed to ovulate, ovaries were devoid of corpora lutea, luteal cell marker genes (Lhcgr, Prlr, Ptgfr, Cyp11a1, and Star) were absent, and serum progesterone levels were low. Microarray analyses identified numerous C/EBPα/β target genes in equine chorionic gonadotropin (eCG)-human (h)CG-treated mice. At 4 h post-hCG, a subset (19%) of genes altered in the Cebpa/b-depleted cells was also altered in ERK1/2-depleted cells; hence they are common effectors of ERK1/2. Additional genes down-regulated in the Cebpa/b-depleted cells at 8 and 24 h post-hCG include known (Akr1b7, Runx2, Star, Saa3) and novel (Abcb1b, Apln, Igfbp4, Prlr, Ptgfr Timp4) C/EBP targets and effectors of luteal and vascular cell development. Bhmt, a gene controlling methionine metabolism and thought to be expressed exclusively in liver and kidney, was high in wild-type luteal cells but totally absent in Cebpa/b mutant cells. Because numerous genes potentially associated with vascular development were suppressed in the mutant cells, C/EBPα/β appear to dictate the luteinization process by also controlling genes that regulate the formation of the extensive vascular network required to sustain luteal cells. Thus, C/EBPα/β mediate the terminal differentiation of GCs during the complex process of luteinization. 相似文献
3.
4.
5.
Li J Shao X Wu L Feng T Jin C Fang M Wu N Yao H 《Acta biochimica et biophysica Sinica》2011,43(5):380-386
In this study, we investigated the mechanisms underlying the anti-inflammatory effects of honokiol in tumor necrosis factor (TNF)-α-stimulated rheumatoid arthritis synovial fibroblasts (RASFs). RASFs pre-treated with honokiol (0-20 μM) were stimulated with TNF-α (20 ng/ml). The levels of prostaglandin E2 (PGE2), nitric oxide (NO), soluble intercellular adhesion molecule-1 (sICAM-1), transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in supernatants were determined by enzyme-linked immunosorbent assay (ELISA) and Griess assay. In addition, protein expression levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated Akt, nuclear factor kappa B (NFκB), and extracellular signal-regulated kinase (ERK)1/2 were determined by western blot. The expression of NFκB-p65 was assessed by immunocytochemical analysis. TNF-α treatment significantly up-regulated the levels of PGE2, NO, sICAM-1, TGF-β1, MCP-1, and MIP-1α in the supernatants of RASFs, increased the protein expression of COX-2, iNOS, and induced phosphorylation of Akt, IκB-α, NFκB, and ERK1/2 in RASFs. TNF-α-induced expression of these molecules was inhibited in a dose-dependent manner by pre-treatment with honokiol. The inhibitory effect of honokiol on NFκB-p65 activity was also confirmed by immunocytochemical analysis. In conclusion, honokiol is a potential inhibitor of TNF-α-induced expression of inflammatory factors in RASFs, which holds promise as a potential anti-inflammatory drug. 相似文献
6.
7.
8.
9.
Rego D Kumar A Nilchi L Wright K Huang S Kozlowski M 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(9):5443-5456
10.
Xingmao Wu Kaiqiang Ji Haiyuan Wang Yang Zhao Jia Jia Xiaopeng Gao Bin Zang 《Journal of cellular biochemistry》2019,120(3):2994-3000
11.
12.
Zahid MD Khurshidul Rogowski Michael Ponce Christopher Choudhury Mahua Moustaid-Moussa Naima Rahman Shaikh M. 《Molecular and cellular biochemistry》2020,463(1-2):211-223
Molecular and Cellular Biochemistry - Atherosclerosis is associated with deregulated cholesterol metabolism and formation of macrophage foam cells. CCAAT/enhancer-binding protein beta (C/EBPβ)... 相似文献
13.
14.
15.
《Journal of trace elements in medicine and biology》2014,28(2):227-232
The objective of this study was to investigate the effects of lead exposure on spatial learning and memory capacity and the expression of amyloid β and phosphorylated tau proteins in the mouse hippocampus. A total of 24 adult C57BL/6 mice (12 of each sex) were mated at a 1:1 ratio. After delivery, the litters were normalised to 6 pups per litter. During the lactation period, the pups were randomly separated into four groups: control, early exposure, late exposure, or long-term exposure. These groups were not exposed to lead, exposed to lead from birth to week 24, exposed to lead from week 24 to week 48, or exposed to lead from birth to 48 weeks of age, respectively. Lead exposure was induced by providing Pb-contaminated drinking water at a concentration of 0.1%. All of the pups were fed until 72 weeks of age, at which time their spatial learning and memory capacity was evaluated via the Morris water maze test. Then, the lead levels in their blood and hippocampus were measured via graphite furnace atomic absorption spectrometry. The protein expression of amyloid β and phosphorylated tau in the hippocampus was detected via Western blot. The results revealed that the hippocampal and blood lead levels were significantly higher in all of the groups exposed to lead than the control group (P < 0.05). The spatial learning and memory performances of the lead-exposed groups were much poorer than those of the control group (P < 0.05). The expression levels of amyloid β and phosphorylated tau proteins were increased in the lead-exposed groups compared to the control group (P < 0.05). The enhanced expressions of amyloid β and phosphorylated tau proteins might contribute to the impairment in spatial learning and memory in the lead-exposed mice. 相似文献
16.
《Life sciences》1989,45(24):iii-x
(2′–5′)An-dependent RNase functions as a translational regulatory protein which mediates interferon action. Levels of this enzyme are decreased in barrier-reared Balb/c (+/+), Balb/c (+/nu), and Balb/c (nu/nu) mice when compared to conventionally reared Balb/c (+/+) mice. This suggests that high levels of (2′–5′)An-dependent RNase in conventionally reared mice are maintained by continuous exposure to microbial flora which may induce interferons. Interferon treatment of barrier-reared mice does not, however, result in an increase in (2′–5′)An-dependent RNase levels. This suggests that responsiveness to interferons is decreased in barrier-reared mice. The high levels of (2′–5′)An-dependent RNase which are maintained in normal mice under physiological conditions may be important for rapid and effective defense against viral pathogens. 相似文献