首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxygenase domain of the inducible nitric oxide synthase, Δ65 iNOSox is a dimer that binds heme, L-Arginine (L-Arg), and tetrahydrobiopterin (H4B) and is the site for NO synthesis. The role of H4B in iNOS structure-function is complex and its exact structural role is presently unknown. The present paper provides a simple mechanistic account of interaction of the cofactor tetrahydrobiopterin (H4B) with the bacterially expressed Δ65 iNOSox protein. Transverse urea gradient gel electrophoresis studies indicated the presence of different conformers in the cofactor-incubated and cofactor-free Δ65 iNOSox protein. Dynamic Light Scattering (DLS) studies of cofactor-incubated and cofactor-free Δ65 iNOSox protein also showed two distinct populations of two different diameter ranges. Cofactor tetrahydrobiopterin (H4B) shifted one population, with higher diameter, to the lower diameter ranges indicating conformational changes. The additional role played by the cofactor is to elevate the heme retaining capacity even in presence of denaturing stress. Together, these findings confirm that the H4B is essential in modulating the iNOS heme environment and the protein environment in the dimeric iNOS oxygenase domain. (Mol Cell Boichem xxx: 1–10, 2005) Supported by Calcutta University Research Grants.  相似文献   

3.
诱导型一氧化氮合酶的激活与血压的关系   总被引:4,自引:0,他引:4  
本实验旨在探讨诱导型一氧化氮合酶(iNOS)的激活与血压之间的关系,三组SD大鼠分别静脉输注不同浓度(0.3%,4%及8%)NaCl溶液以使其处于不同的血压水平,运用同位素标记的L-精氨酸转换成L-Citrulline 的转换率变化及Greiss反应,分别测定不同血压时iNOS的活性及NO的生成量,另四组大鼠包括正常Wistar,正常SD,高盐诱导的高血压(NaHR)及自发性高血压大鼠(SHR),经测定血压后,取主动脉血管并以Western印迹印交法测定其iNOS蛋白水平,结果表明,血压较低时,SD大鼠iNOS活基本没有改变,而在输入4%和8%NaCl并处于较高血压水平的SD大鼠,其iNOS活性及NO生存均明显升高,。此外Western 印迹表明,两种高血压大鼠主动脉组织iNOS蛋白水平均较正常Wistar及正常SD大鼠高,密度扫描表明,NaHR及SHR主动脉组织iNOS蛋白分别较正常SD大鼠及正常Wistar大鼠升高149%及261%,这一结果提示,诱导型一氧化氮合酶是血液动力学调控的重要组成部分,尤其是在血压处于较高水平时,iNOS具有重要的代偿调节作用,除细胞因子,细菌产物等之外,血压也是调节iNOS表达及活性的重要因素之一。  相似文献   

4.
Upregulation of inducible nitric oxide synthase (iNOS) has been reported in both experimental and clinical hypertension. However, although pro‐inflammatory cytokines that up‐regulate iNOS contribute to pre‐eclampsia, no previous study has tested the hypothesis that a selective iNOS inhibitor (1400 W) could exert antihypertensive effects associated with decreased iNOS expression and nitrosative stress in pre‐eclampsia. This study examined the effects of 1400 W in the reduced uteroplacental perfusion pressure (RUPP) placental ischaemia animal model and in normal pregnant rats. Sham‐operated and RUPP rats were treated with daily vehicle or 1 mg/kg/day N‐[3‐(Aminomethyl) benzyl] acetamidine (1400 W) subcutaneously for 5 days. Plasma 8‐isoprostane levels, aortic reactive oxygen species (ROS) levels and nicotinamide adenine dinucleotide phosphate (NADPH)‐dependent ROS production were evaluated by ELISA, dihydroethidium fluorescence microscopy and lucigenin chemiluminescence respectively. Inducible nitric oxide synthase expression was assessed by western blotting analysis and aortic nitrotyrosine was evaluated by immunohistochemistry. Mean arterial blood pressure increased by ~30 mmHg in RUPP rats, and 1400 W attenuated this increase by ~50% (P < 0.05). While RUPP increased plasma 8‐isoprostane levels, aortic ROS levels, and NADPH‐dependent ROS production (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). Moreover, while RUPP increased iNOS expression and aortic nitrotyrosine levels (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). These results clearly implicate iNOS in the hypertension associated with RUPP. Our findings may suggest that iNOS inhibitors could be clinically useful in the therapy of pre‐eclampsia, especially in particular groups of patients genetically more prone to express higher levels of iNOS. This issue deserves further confirmation.  相似文献   

5.
6.
目的:探讨脊髓水平诱导型一氧化氮合酶在吗啡依赖大鼠戒断反应中的作用。方法:健康雄性SD大鼠72只,体重200~250 g,吗啡剂量每次10 mg/kg,每日2次,隔日每次增加10 mg/kg,至第6天末次注射50 mg/kg,大鼠腹腔注射纳洛酮4 mg/kg建立吗啡依赖及戒断模型,在纳洛酮激发戒断前30 min鞘内注射iNOS特异性抑制剂氨基胍(AG)150μg。分为正常对照组、吗啡依赖组、吗啡戒断组、AG组。采用行为学(n=8)、免疫组织化学(n=6)和Western blot(n=4)方法观察鞘内应用iNOS特异性抑制剂氨基胍对吗啡依赖大鼠纳洛酮催促戒断反应和脊髓神经元iNOS表达的影响。结果:AG组戒断症状评分和戒断组促诱发痛评分均低于戒断组(P<0.05)。免疫组织化学和Western blot显示戒断组大鼠脊髓iNOS阳性神经元的数目和蛋白的表达增高,而AG组大鼠脊髓iNOS阳性神经元的数目和iNOS蛋白的表达低于戒断组(P<0.05)。结论:脊髓水平iNOS表达上调可能参与介导吗啡戒断反应。  相似文献   

7.
Cutaneous leishmaniasis (CL) is an infectious disease caused by Leishmania parasite. The expression of inducible nitric oxide synthase (iNOS) and generation of nitric oxide in response to IFN-γ and TNF-α is important in control of infection. The aim of the study was to determine the expression of iNOS in the lesions of Leishmania tropica, and whether there was a correlation between the level of expression and the duration of the disease. Punch biopsy was performed from patients (n = 29) and iNOS immunohistochemical staining was applied. Expression of iNOS protein was detected 82.8% of patients. There was a strong expression with the duration of the disease less than 6 months (p < 0.002). These findings demonstrate that iNOS has a role in L. tropica especially during the early stages of the infection. (Mol Cell Biochem xxx: 147–149, 2005)  相似文献   

8.
Lipopolysaccharide (LPS) and interferon-gamma (IFN) treatment of C6 rat glioma cells increased the intracellular ceramide level and the expression of the inducible nitric oxide synthase (iNOS) gene. To delineate the possible role of ceramide in the induction of iNOS, we examined the source of intracellular ceramide and associated signal transduction pathway(s) with the use of inhibitors of intracellular ceramide generation. The inhibitor of neutral sphingomyelinase (3-O-methylsphingomyelin, MSM) inhibited the induction of iNOS, whereas inhibitor of acidic sphingomyelinase (SR33557) or that of ceramide de novo synthesis (fumonisin B1) had no effect on the induction of iNOS. MSM-mediated inhibition of iNOS induction was reversed by the supplementation of exogenous C8-ceramide, suggesting that ceramide production by neutral sphingomyelinase (nSMase) is a key mediator in the induction of iNOS. The MSM-mediated inhibition of iNOS gene expression correlated with the decrease in the activity of ras. Inhibition of co-transfected iNOS promoter activity by dominant negative ras supported the role of ras in the nSMase-dependent regulation of iNOS gene. NF-kappaB DNA binding activity and its transactivity were also reduced by MSM pretreatment, and were completely reversed by the supplementation of C8-ceramide. As the dominant negative ras also reduced NF-kappaB transactivity, NF-kappaB activation may be downstream of ras. Our results suggest that ceramide generated by nSMase may be a critical mediator in the regulation of iNOS gene expression via ras-mediated NF-kappaB activation under inflammatory conditions.  相似文献   

9.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

10.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

11.
Inducible nitric oxide synthase (iNOS) is a major source of nitric oxide during inflammation whose activity is thought to be controlled primarily at the expression level. The B1 kinin receptor (B1R) post‐translationally activates iNOS beyond its basal activity via extracellular signal regulated kinase (ERK)‐mediated phosphorylation of Ser745. Here we identified the signalling pathway causing iNOS activation in cytokine‐treated endothelial cells or HEK293 cells transfected with iNOS and B1R. To allow kinetic measurements of nitric oxide release, we used a sensitive porphyrinic microsensor (response time = 10 msec.; 1 nM detection limit). B1Rs signalled through Gαi coupling as ERK and iNOS activation were inhibited by pertussis toxin. Furthermore, transfection of constitutively active mutant Gαi Q204L but not Gαq Q209L resulted in high basal iNOS‐derived nitric oxide. G‐βγ subunits were also necessary as transfection with the β‐adrenergic receptor kinase C‐terminus inhibited the response. B1R‐dependent iNOS activation was also inhibited by Src family kinase inhibitor PP2 and trans‐fection with dominant negative Src. Other ERK‐MAP kinase members were involved as the response was inhibited by dominant negative H‐Ras, Raf kinase inhibitor, ERK activation inhibitor and MEK inhibitor PD98059. In contrast, PI3 kinase inhibitor LY94002, calcium chelator 1,2‐bis‐(o‐Aminophenoxy)‐ethane‐N,N,N′,N′‐tetraacetic acid, tetraacetoxymethyl ester (BAPTA‐AM), protein kinase C inhibitor calphostin C and protein kinase C activator PMA had no effect. Angiotensin converting enzyme inhibitor enalaprilat also directly activated B1Rs to generate high output nitric oxide via the same pathway. These studies reveal a new mechanism for generating receptor‐regulated high output nitric oxide in inflamed endothelium that may play an important role in the development of vascular inflammation.  相似文献   

12.
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.  相似文献   

13.
14.
The intense host response to meningococcus reflects marked functional and morphological alterations in blood-brain barriers. We showed previously that mouse-derived cerebrovascular endothelium responded to meningococcal lysates with a robust nitric oxide (NO) response, resulting in the loss of cell viability. To understand how the NO synthase-2 gene in endothelium is activated by meningococcus, we investigated upstream roles for specific protein kinases. Using known kinase inhibitors, and measuring both mRNA expression and nitrite release, we found MAPK/ERK kinase (MEK)2, p38 kinase and phosphoinositide 3-kinase (but not MEK1 or phospholipase C) to be implicated in the NO synthase-2 response. Recruitment of these kinases by meningococcus did not depend on the prior release of the proinflammatory cytokines tumour necrosis factor alpha or interleukin-1beta from endothelium. These endothelial cells were found to express toll-like receptors (TLR) 2, 4 and 9 and antibodies directed against TLR 2 and 4 (but not TLR 9) blocked the NO synthase-2 response to meningococcus. Both meningococcus-induced translocation of nuclear factor-kB (NF-kB) and endothelial cell death were blocked by a known inhibitor of p38 kinase. Calpain inhibitor-1 blocked the NO synthase-2 response to meningococcus, which is further evidence of a role for NF-kB.  相似文献   

15.
Hyperhomocysteinemia is an independent risk factor for atherosclerotic diseases. Inducible nitric oxide synthase (iNOS) is mainly expressed in macrophages upon stimulation. Overproduction of nitric oxide (NO) by iNOS can exacerbate the development of atherosclerosis. Our previous studies demonstrated that the extract of ginkgo biloba leaves (EGb) inhibited the iNOS-mediated NO production in monocyte-derived macrophage. We also reported that homocysteine could stimulate monocyte chemoattractant protein-1 (MCP-1) expression in vascular cells causing enhanced monocyte chemotaxis. The objective of the present study was to investigate the effect of homocysteine on iNOS-mediated NO production in macrophages and the antagonizing effect of EGb. Human monocytic cell (THP-1)-derived macrophages were incubated with homocysteine for various time periods. Homocysteine at concentrations of 0.05–0.1 mM significantly stimulated NO production and iNOS activity in macrophages via increased expression of iNOS mRNA and protein. The increased iNOS expression was associated with activation of nuclear factor-kappa B (NF-B) arising from reduced expression of inhibitor protein (IB) mRNA as well as increased phosphorylation of IB protein in homocysteine-treated cells. EGb and its terpenoids (ginkgolide A, ginkgolide B and bilobalide) could antagonize the homocysteine effect on iNOS expression in macrophages via their antioxidant effect resulting in attenuation of NF-B activation. Taken together, our results have demonstrated that homocysteine, at pathophysiological concentrations, stimulates iNOS-mediated NO production in macrophages. EGb and its terpenoids can antagonize such stimulatory effect via antioxidation and attenuation of NF-B activation.  相似文献   

16.
17.
The present study has been designed to pharmacologically expound the significance of inducible nitric oxide synthase in the pathophysiological progression of seizures using mouse models of chemically induced kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 days was used to elicit kindled seizure activity in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every 20 min until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration induced the development of severe form of kindled seizures in mice. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, treatment of aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase, markedly and dose dependently suppressed the development of both PTZ induced kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore inducible nitric oxide synthase may be implicated in the development of seizures.  相似文献   

18.
Triptolide (TP),a traditional Chinese medicine,has been reported to be effective in thetreatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines.Thisstudy investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia(K562),and elucidates the possible molecular mechanism involved.SW114 and K562 cells were treatedwith different doses of TP (0,5,10,20,or 50 ng/ml).The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation ofboth tumor cell lines in a dose-dependent manner.To further investigate its mechanisms,the productsprostaglandin E_2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay(ELISA).Our data showed that TP strongly inhibited the production of NO and PGE_2. Consistent with theseresults,the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulatedboth at the mRNA level and the protein expression level,as shown by real-time RT-PCR and Westernblotting.These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activitycould be involved in the antitumor mechanisms of TP.  相似文献   

19.
昆虫一氧化氮及其合酶的研究进展   总被引:5,自引:0,他引:5  
王晓安  郑哲民 《昆虫知识》2003,40(2):112-118
一氧化氮作为一种重要的信息分子 ,参与调节昆虫嗅觉、视觉、机械感受、发育、机体防御及学习行为。该文从生理、生化、形态定位以及信号转导几方面综述了有关昆虫一氧化氮及其合酶的最新研究进展。  相似文献   

20.
A cellular biosensing system has been constructed to assess the biological safety/toxicity of chemicals. Detection of nitric oxide (NO) by the cellular biosensing system was used as a readout for assessing the immunomodulating effects of various chemicals, because some are known to induce NO synthase (iNOS) activity thereby increasing NO production. The macrophage-like cell line, RAW264.7, was cultured on the electrode coated with a polyion complex layer. The potent immune activating abilities of lipopolysaccharide could be verified by the cellular biosensing system: NO release from cells was detected within 600 ms by double potential step chronoamperometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号