首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin‐B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin‐B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin‐B2, we utilized time‐lapse imaging to characterize the effects of ephrin‐B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin‐B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally‐projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally‐projecting ventronasal axons are less sensitive to ephrin‐B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 781–794, 2010  相似文献   

2.
Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate here that semaphorin 3A (Sema3A) induces a coordinated rearrangement of Sema3A receptors and F-actin during growth cone collapse. Differential interference contrast microscopy reveals that some sites of Sema3A-induced F-actin reorganization correlate with discrete vacuoles, structures involved in endocytosis. Endocytosis of FITC-dextran by the growth cone is enhanced during Sema3A treatment, and sites of dextran accumulation colocalize with actin-rich vacuoles and ridges of membrane. Furthermore, the Sema3A receptor proteins, neuropilin-1 and plexin, and the Sema3A signaling molecule, rac1, also reorganize to vacuoles and membrane ridges after Sema3A treatment. These data support a model whereby Sema3A stimulates endocytosis by focal and coordinated rearrangement of receptor and cytoskeletal elements. Dextran accumulation is also increased in retinal ganglion cell (RGC) growth cones, in response to ephrin A5, and in RGC and DRG growth cones, in response to myelin and phorbol-ester. Therefore, enhanced endocytosis may be a general principle of physiologic growth cone collapse. We suggest that growth cone collapse is mediated by both actin filament rearrangements and alterations in membrane dynamics.  相似文献   

3.
Many external signals influence growth cone motility, pathfinding, and the formation of synapses that lead to the final map formation of the retinotectal system. Chick temporal retinal ganglion cell axons (RGCs) collapse and retract after encountering posterior tectal cells in vitro. During this process lateral extensions appear along the RGC axonal shaft. Lateral extensions appear as nascent interstitial axonal branches and also as defasciculating growth cones that are trailing along the pioneer axon. RGC branching controlled by repellent tectal cues has recently been shown to be the critical event in retinotectal map development. The intracellular mechanism underlying this phenomenon, however, is not understood. Inhibiting RhoA with either C3 toxin or inhibiting p160Rock kinase, an effector of RhoA, with Y27632 inhibited collapse, retraction, and the number of axons that showed lateral extensions. Lateral extension length increased significantly. Inhibiting Rac1A and cdc42 with cell permeable peptide inhibitors did not inhibit collapse of growth cones, but did inhibit axon retraction. In addition, the number of axons that showed lateral extensions and lateral extension length were significantly reduced. A dynamic cytoskeleton is necessary to react to incoming guidance information. This study addresses the problems of how growth cone motility and branching or defasciculation are affected by Rho-GTPases as extracellular signals are transmitted to the cytoskeleton.  相似文献   

4.
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, play important roles during development of the nervous system. Frequently they exert their functions through a repellent mechanism, so that, for example, an axon expressing an Eph receptor does not invade a territory in which an ephrin is expressed. Eph receptor activation requires membrane-associated ligands. This feature discriminates ephrins from other molecules sculpturing the nervous system such as netrins, slits and class 3 semaphorins, which are secreted molecules. While the ability of secreted molecules to guide axons, i.e. to change their growth direction, is well established in vitro, little is known about this for the membrane-bound ephrins. Here we set out to investigate--using Xenopus laevis retinal axons--the properties of substratum-bound and (artificially) soluble forms of ephrin-A5 (ephrin-A5-Fc) to guide axons. We find--as expected on the basis of chick experiments - that, when immobilised in the stripe assay, ephrin-A5 has a repellent effect such that retinal axons avoid ephrin-A5-Fc-containing lanes. Also, retinal axons react with repulsive turning or growth cone collapse when confronted with ephrin-A5-Fc bound to beads. However, when added in soluble form to the medium, ephrin-A5 induces growth cone collapse, comparable to data from chick. The analysis of growth cone behaviour in a gradient of soluble ephrin-A5 in the 'turning assay' revealed a substratum-dependent reaction of Xenopus retinal axons. On fibronectin, we observed a repulsive response, with the turning of growth cones away from higher concentrations of ephrin-A5. On laminin, retinal axons turned towards higher concentrations, indicating an attractive effect. In both cases the turning response occurred at a high background level of growth cone collapse. In sum, our data indicate that ephrin-As are able to guide axons in immobilised bound form as well as in the form of soluble molecules. To what degree this type of guidance is relevant for the in vivo situation remains to be shown.  相似文献   

5.
In the developing retina, retinal ganglion cell (RGC) axons elongate toward the optic fissure, even though no obvious directional restrictions exist. Previous studies indicate that axon-matrix interactions are important for retinal ganglion cell axon elongation, but the factors that direct elongation are unknown. Chondroitin sulfate proteoglycan (CS-PG), a component of the extracellular matrix, repels elongating dorsal root ganglion (DRG) axons in vitro and is present in vivo in the roof plate of the spinal cord, a structure that acts as a barrier to DRG axons during development. In this study, we examined whether CS-PG may regulate the pattern of retinal ganglion cell outgrowth in the developing retina. Immunocytochemical analysis showed that CS-PG was present in the innermost layers of the developing rat retina. The expression of CS-PG moved peripherally with retinal development, always remaining at the outer edge of the front of the developing axons. CS-PG was no longer detectable with immunocytochemical techniques when RGC axon elongation in the retina is complete. Results of studies in vitro showed that CS-PG, isolated from bovine nasal cartilage and chick limb, was inhibitory to elongating RGC axons and that RGC growth cones were more sensitive to CS-PG than were DRG neurites tested at the same concentrations of CS-PG. The behavior of retinal growth cones as they encounter CS-PG was characterized using time-lapse video microscopy. Filopodia of the RGC growth cones extended to and sampled the CS-PG repeatedly. With time, the growth cones turned to avoid outgrowth on the CS-PG and grew only on laminin. While numerous studies have shown the presence of positive factors within the retina that may guide developing RGC axons, this is the first demonstration of an inhibitory or repelling molecule in the retina that may regulate axon elongation. Taken together, these data suggest that the direction of RGC outgrowth in the retina may be regulated by the proper ratio of growth-promoting molecules, such as laminin, to growth-inhibiting molecules, like CS-PG, present in the correct pattern and concentrations along the retinal ganglion cell pathway.  相似文献   

6.
Many external signals influence growth cone motility, pathfinding, and the formation of synapses that lead to the final map formation of the retinotectal system. Chick temporal retinal ganglion cell axons (RGCs) collapse and retract after encountering posterior tectal cells in vitro. During this process lateral extensions appear along the RGC axonal shaft. Lateral extensions appear as nascent interstitial axonal branches and also as defasciculating growth cones that are trailing along the pioneer axon. RGC branching controlled by repellent tectal cues has recently been shown to be the critical event in retinotectal map development. The intracellular mechanism underlying this phenomenon, however, is not understood. Inhibiting RhoA with either C3 toxin or inhibiting p160Rock kinase, an effector of RhoA, with Y27632 inhibited collapse, retraction, and the number of axons that showed lateral extensions. Lateral extension length increased significantly. Inhibiting Rac1A and cdc42 with cell permeable peptide inhibitors did not inhibit collapse of growth cones, but did inhibit axon retraction. In addition, the number of axons that showed lateral extensions and lateral extension length were significantly reduced. A dynamic cytoskeleton is necessary to react to incoming guidance information. This study addresses the problems of how growth cone motility and branching or defasciculation are affected by Rho‐GTPases as extracellular signals are transmitted to the cytoskeleton. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 358–369, 2003  相似文献   

7.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

8.
Growth factors have been shown previously to participate in the process of axon target recognition. We showed that fibroblast growth factor receptor (FGFR) signaling is required for Xenopus laevis retinal ganglion cell (RGC) axons to recognize their major midbrain target, the optic tectum [neuron 17 (1996), 245]. Therefore, we have hypothesized that a change in expression of a fibroblast growth factor (FGF) at the entrance of the optic tectum, the border between the diencephalon and mesencephalon, may serve as a signal to RGC axons that they have reached their target. To determine whether RGC axons can sense changes in FGF levels, we asked whether they altered their behavior upon encountering an ectopic source of FGF. We found that in vivo RGC growth cones avoided FGF-misexpressing cells along their path, and that FGF-2 directly repelled RGC growth cones in an in vitro growth cone turning assay. These data support the idea that RGC axons can sense changes in FGF levels, and as such provide a mechanism by which FGFR signaling is involved in RGC axon target recognition.  相似文献   

9.
Optic nerve formation requires precise retinal ganglion cell (RGC) axon pathfinding within the retina to the optic disc, the molecular basis of which is not well understood. At CNS targets, interactions between Eph receptor tyrosine kinases on RGC axons and ephrin ligands on target cells have been implicated in formation of topographic maps. However, studies in chick and mouse have shown that both Eph receptors and ephrins are also expressed within the retina itself, raising the possibility that this receptor-ligand family mediates aspects of retinal development. Here, we more fully document the presence of specific EphB receptors and B-ephrins in embryonic mouse retina and provide evidence that EphB receptors are involved in RGC axon pathfinding to the optic disc. We find that as RGC axons begin this pathfinding process, EphB receptors are uniformly expressed along the dorsal-ventral retinal axis. This is in contrast to the previously reported high ventral-low dorsal gradient of EphB receptors later in development when RGC axons map to CNS targets. We show that mice lacking both EphB2 and EphB3 receptor tyrosine kinases, but not each alone, exhibit increased frequency of RGC axon guidance errors to the optic disc. In these animals, major aspects of retinal development and cellular organization appear normal, as do the expression of other RGC guidance cues netrin, DCC, and L1. Unexpectedly, errors occur in dorsal but not ventral retina despite early uniform or later high ventral expression of EphB2 and EphB3. Furthermore, embryos lacking EphB3 and the kinase domain of EphB2 do not show increased errors, consistent with a guidance role for the EphB2 extracellular domain. Thus, while Eph kinase function is involved in RGC axon mapping in the brain, RGC axon pathfinding within the retina is partially mediated by EphB receptors acting in a kinase-independent manner.  相似文献   

10.
Brain derived neurotrophic factor (BDNF) when added to explant cultures of both embryonic and adult retinal ganglion cell (RGC) axons exerted a marked effect on their growth cone size and complexity and also on the intensity of GAP-43, ß-III tubulin and F-actin immunoreaction product in their axons. GAP-43 was distributed in axons, lamellipodia, and filopodia whereas ß-III tubulin was distributed along the length of developing and adult regenerating axons and also in the C-domain of their growth cones. BDNF-treated developing RGC growth cones were larger and displayed increased numbers of GAP-43 and microtubule-containing branches. Although filopodia and lamellipodia were lost from both developing and adult RGC growth cones following trkB-IgG treatment, the intensity of the immunoreaction product of all these molecules was reduced and trkB-IgGs had no effect on the axonal distribution of ß-III tubulin and GAP-43. BDNF-treated growth cones also displayed increased numbers of F-actin containing filopodia and axonal protrusions. This study demonstrates, for the first time, that trkB-IgG treatment causes the loss of F-actin in the P-domain of growth cone tips in developing and regenerating RGC axons. Although microtubules and F-actin domains normally remained distinct in cultured growth cones, ß-III tubulin and F-actin overlapped within the growth cone C-domain, and within axonal protrusions of adult RGC axons, under higher concentrations of BDNF. The collapse of RGC growth cones appeared to correlate with the loss of F-actin. In vitro, trkB signalling may therefore be involved in the maintenance and stabilisation of RGC axons, by influencing F-actin polymerisation, stabilisation and distribution.  相似文献   

11.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin‐B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor‐bearing) and dorsal (ephrin‐B‐bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5–10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin‐B1 ectodomains cause slow (30–60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor‐ligand binding, endocytosis occurs in the reverse direction (EphB2‐Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B‐type Eph/ephrin‐mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 323–336, 2003  相似文献   

12.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small-caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large-muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin-1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)- and NT3 (proprioceptive)-dependent sensory axons extended from E6-E10 chick embryos. Growth cones extended from E6 DRGs in NT3-containing medium expressed neuropilin-1 and collapsed in response to Sema3A. From E7 until E10 NT3-responsive growth cones expressed progressively lower levels of neuropilin-1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF-containing medium expressed progressively higher levels of neuropilin-1 and higher levels of collapse response to Sema3A over the period from E6-E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin-1.  相似文献   

13.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5-poor anterior tectum and avoid the ephrinA5-rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA-coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time-delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum.  相似文献   

14.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5‐poor anterior tectum and avoid the ephrinA5‐rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA‐coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time‐delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

15.
Chick embryo retinal ganglion cell (RGC) axons grow to the optic tectum along a stereotyped route, as if responding to cues distributed along the pathway. We showed previously that, in culture, RGCs from embryonic Day 6 retina are responsive to the neurite-promoting effects of the extracellular matrix glycoprotein laminin and that this response is lost by RGCs at a later stage of development. Here we report that, before axon outgrowth is initiated in vivo, laminin, is expressed along the optic pathway at nonbasal lamina sites that are accessible to the growth cones of RGC axons. The distribution of laminin within the pathway is consistent with its localization at the end-feet of neuroepithelial cells that line the route, and it continues to be expressed at these marginal sites during the first week of embryonic development. At later stages, concomitant with the loss of response by RGCs in culture, laminin becomes restricted to basal laminae at the retinal inner limiting membrane and pial surface of the optic pathway. Neurofilament-positive RGC axons bind a monoclonal antibody, JG22, which recognizes the laminin/fibronectin receptor complex, and continue to do so throughout embryonic development. We show that, in vitro, the JG22 antigen expressed by RGCs appears to function as a laminin receptor, by demonstrating that JG22 antibody blocks neurite outgrowth on a substrate of laminin. These findings are consistent with the possibility that laminin defines a transient performed pathway specifically recognized by early RGC growth cones as they navigate toward their central target.  相似文献   

16.
Semaphorin 3E/collapsin-5 inhibits growing retinal axons   总被引:2,自引:0,他引:2  
During development, the formation of neural networks is reflected by the oriented extension of neurites. Using retinal ganglion cells (RGCs) as a model, we identified the yet uncharacterized chick semaphorin Sema3E/collapsin-5 as a repulsive cue for outgrowing axons. Sema3E/collapsin-5 was highly regulated during retinal histogenesis, with peak expression during the period of intraretinal axon growth. Polymerase chain reaction analysis demonstrated Sema3E/collapsin-5 mRNA in retina layers, from which RGC axons are excluded. Neither isolated RGCs nor purified retinal Müller glia cells synthesized Sema3E/collapsin-5. Sema3E/collapsin-5 receptor sites were visualized by alkaline phosphatase fusion proteins in the axon-rich optic fiber layer. Time-lapse video recording of chick in vitro cultures revealed a growth cone collapsing activity of recombinant Sema3E/collapsin-5. This effect was specific for RGCs, since dorsal root ganglia (DRG) neurons of the peripheral nervous system were not affected. Comparison with Sema3A/collapsin-1 displayed a reciprocal specificity, because Sema3A/collapsin-1 hampered exclusively DRG but not RGC growth cones. The collapsing effect was mediated by low cGMP levels, but not cAMP, as revealed by a set of agonists. In summary, the data suggest a possible role of chick Sema3E/collapsin-5 in restricting growth of retinal ganglion cell axons to the optic fiber layer.  相似文献   

17.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small‐caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large‐muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin‐1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)‐ and NT3 (proprioceptive)‐dependent sensory axons extended from E6‐E10 chick embryos. Growth cones extended from E6 DRGs in NT3‐containing medium expressed neuropilin‐1 and collapsed in response to Sema3A. From E7 until E10 NT3‐responsive growth cones expressed progressively lower levels of neuropilin‐1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF‐containing medium expressed progressively higher levels of neuropilin‐1 and higher levels of collapse response to Sema3A over the period from E6–E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin‐1. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 43–53, 2002  相似文献   

18.
Netrin-1 influences retinal ganglion cell (RGC) axon pathfinding and also participates in the branching and synaptic differentiation of mature RGC axons at their target. To investigate whether netrin also serves as an early target recognition signal in the brain, we examined the dynamic behavior of Xenopus RGC axons soon after they innervate the optic tectum. Time-lapse confocal microscopy imaging of RGC axons expressing enhanced yellow fluorescent protein demonstrated that netrin-1 is involved in early axon branching, as recombinant netrin-1 halted further advancement of growth cones into the tectum and induced back branching. RGC growth cones exhibited differential responses to netrin-1 that depended on the degree of differentiation of the axon and the developmental stage of the tadpole. Netrin-1 decreased the total number of branches on newly arrived RGC growth cones at the target, but increased the dynamic branching of more mature arbors at the later developmental stage. To further explore the response of axonal growth cones to netrin, Xenopus RGC axons were followed in culture by time-lapse imaging. Exposure to netrin-1 rapidly increased the forward advancement of the axon and decreased the size and expanse of the growth cone, while also inducing back branching. Taken together, the differential in vivo and in vitro responses to netrin-1 suggest that netrin alone is not sufficient to induce the cessation of growth cone advancement in the absence of a target but can independently modulate axon branching. Collectively, our findings reveal a novel role for netrin on RGC axon branch initiation as growth cones innervate their target.  相似文献   

19.
Graded distributions of ephrin ligands are involved in the formation of topographic maps. However, it is still poorly understood how growth cones read gradients of membrane-bound guidance molecules. We used microcontact printing to produce discontinuous gradients of substrate-bound ephrinA5. These consist of submicron-sized protein-covered spots, which vary with respect to their sizes and spacings. Growth cones of chick temporal retinal axons are able to integrate these discontinuous ephrin distributions and stop at a distinct zone in the gradient while still undergoing filopodial activity. The position of this stop zone depends on both the steepness of the gradient and on the amount of substrate-bound ephrin per unit surface area. Quantitative analysis of axon outgrowth shows that the stop reaction is controlled by a combination of the local ephrin concentration and the total amount of encountered ephrin, but cannot be attributed to one of these parameters alone.  相似文献   

20.
Axonal growth is essential for establishing neuronal circuits during brain development and for regenerative processes in the adult brain. Unfortunately, the extracellular signals controlling axonal growth are poorly understood. Here we report that a reduction in extracellular ATP levels by tissue-nonspecific alkaline phosphatase (TNAP) is essential for the development of neuritic processes by cultured hippocampal neurons. Selective blockade of TNAP activity with levamisole or specific TNAP knockdown with short hairpin RNA interference inhibited the growth and branching of principal axons, whereas addition of alkaline phosphatase (ALP) promoted axonal growth. Neither activation nor inhibition of adenosine receptors affected the axonal growth, excluding the contribution of extracellular adenosine as a potential hydrolysis product of extracellular ATP to the TNAP-mediated effects. TNAP was colocalized at axonal growth cones with ionotropic ATP receptors (P2X7 receptor), whose activation inhibited axonal growth. Additional analyses suggested a close functional interrelation of TNAP and P2X7 receptors whereby TNAP prevents P2X7 receptor activation by hydrolyzing ATP in the immediate environment of the receptor. Furthermore inhibition of P2X7 receptor reduced TNAP expression, whereas addition of ALP enhanced P2X7 receptor expression. Our results demonstrate that TNAP, regulating both ligand availability and protein expression of P2X7 receptor, is essential for axonal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号