首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel label-free electrochemical strategy has been developed for assay of casein kinase II (CK2) activity and inhibition using TiO(2)/MWNTs nanocomposites. This detection system takes advantage of specific binding of the phosphate groups with TiO(2) nanoparticles and fast electron transfer rate of MWNTs. In this strategy, the synthesized TiO(2)/MWNTs nanocomposite was firstly deposited on the surface of a glassy carbon electrode (GCE). The presence of MWNTs not only increased the surface area of the electrode but also promoted electron-transfer reaction. In the presence of CK2, the kinase reaction resulted in the phosphorylation of peptide substrates. The phosphorylated peptides were subsequently captured to the surface of GCE modified with TiO(2)/MWNTs nanocomposite through specific binding of the phosphate groups with TiO(2) nanoparticles. Then the access of redox probe [Fe(CN)(6)](3-/4-) to electrode surface was blocked. As a result, the decrease peak currents were related to the concentrations of the CK2, providing a sensing mechanism for monitoring peptides phosphorylation. The electrochemical strategy can be employed to assay CK2 activity with a low detection limit of 0.07 U/mL. The linear range of the assay for CK2 was 0-0.5 U/mL. Furthermore, the interferences experiments of PKA and inhibition of CK2 have been also studied by using this strategy.  相似文献   

2.
A novel electrochemical strategy for monitoring the activity and inhibition of T4 polynucleotide kinase (PNK) is developed by use of titanium ion (Ti(4+)) mediated signal transition coupled with signal amplification of single wall carbon nanotubes (SWCNTs). In this method, a DNA containing 5'-hydroxyl group is self-assembled onto the gold electrode and used as substrate for PNK. The biofunctionalized SWCNTs with anchor DNA and ferrocene are chosen as the signal indicator by virtue of the intrinsic 5'-phosphate end of anchor DNA and the high loading of ferrocene for electrochemical signal generation and amplification. The 5'-hydroxyl group of the substrate DNA on the electrode is phosphorylated by T4 PNK in the presence of ATP, and the resulting 5'-phosphoryl end product can be linked with the signal indicator by Ti(4+). The redox ferrocene group on the SWCNTs is grafted to the electrode and generates the electrochemical signal, the intensity of which is proportional to the activity of T4 PNK. This assay can measure activity of T4 PNK down to 0.01 UmL(-1). The developed method is a potentially useful tool in researching the interactions between proteins and nucleic acids and provides a diversified platform for a kinase activity assay.  相似文献   

3.
A novel label-free electrochemical method for measuring the activity of protein tyrosine kinases (PTK) has been developed. Epidermal growth factor receptor (EGFR), a typical PTK associated with a large percentage of all solid tumors, was used as the model kinase. Poly(glu, tyr) (4:1) peptide, as a substrate of EGFR, was covalently immobilized on the surface of indium tin oxide (ITO) electrode by silane chemistry. The tyrosine (Tyr) residue in the polypeptide served as an electrochemical signal reporter. Its voltammetric current was catalyzed by a dissolved electron mediator Os(bpy)(3)(2+) (bpy=2,2'-bipyridine) for increased sensitivity. Phosphorylation of the Tyr led to a loss of its electrochemical current, thus providing a sensing mechanism for PTK activity. Experimental conditions for the silanization of ITO surface and immobilization of polypeptide were investigated in details to facilitate the generation of Tyr electrochemical signal. The proposed biosensor exhibited high sensitivity and excellent stability. The limit of detection for EGFR was 1 UmL(-1). Furthermore, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent electrochemical signal, the half-maximal inhibition value IC(50) of three EGFR inhibitors, PD-153035, OSI-774 and ZD-1839, and their corresponding inhibition constants K(i) were estimated, which were in agreement with those obtained from the conventional kinase assay. This electrochemical biosensor can be implemented in an array format for the high throughput assay of in vitro PTK activity and PTK inhibitors screening for practical diagnostic application and drug discovery.  相似文献   

4.
We introduce a mass spectrometry-based method that provides residue-resolved quantitative information about protein phosphorylation. In this assay we combined our full-length expressed stable isotope-labeled protein for quantification strategy (FLEXIQuant) with a traditional kinase assay to determine the mechanisms of multikinase substrate phosphorylation such as priming-dependent kinase activities. The assay monitors the decrease in signal intensity of the substrate peptides and the concomitant increase in the (n × 80 Da)-shifted phosphorylated peptide. We analyzed the c-Jun N-terminal kinase (JNK)-dependent glycogen synthase kinase 3β (GSK3β) activity on doublecortin (DCX) revealing mechanistic details about the role of phosphorylation cross-talk in GSK3β activity and permitting an advanced model for GSK3β-mediated signaling.  相似文献   

5.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

6.
Experiments were performed to investigated the mechanism of sucrose-phosphate synthase (SPS) activation by osmotic stress in darkened spinach (Spinacia oleracea L.) leaves. The activation was stable through immunopurification and was not the result of an increased SPS protein level. The previously described Ca(2+)-independent peak III kinase, obtained by ion-exchange chromatography, is confirmed to be the predominant enzyme catalyzing phosphorylation and inactivation of dephosphoserine-158-SPS. A new, Ca(2+)-dependent SPS-protein kinase activity (peak IV kinase) was also resolved and shown to phosphorylate and activate phosphoserine-158-SPS in vitro. The peak IV kinase also phosphorylated a synthetic peptide (SP29) based on the amino acid sequence surrounding serine-424, which also contains the motif described for the serine-158 regulatory phosphorylation site; i.e. basic residues at P-3 and P-6 and a hydrophobic residue at P-5. Peak IV kinase had a native molecular weight of approximately 150,000 as shown by gel filtration. The SP29 peptide was not phosphorylated by the inactivating peak III kinase. Osmotically stressed leaves showed increased peak IV kinase activity with the SP29 peptide as a substrate. Tryptic 32P-phosphopeptide analysis of SPS from excised spinach leaves fed [32P]inorganic P showed increased phosphorylation of the tryptic peptide containing serine-424. Therefore, at least part of the osmotic stress activation of SPS in dark leaves results from phosphorylation of serine-424 catalyzed by a Ca(2+)-dependent, 150-kD protein kinase.  相似文献   

7.
We previously identified p65/L-plastin as a phosphorylated protein in LPS-stimulated macrophages and determined its phosphorylation site. In vitro kinase assay using peptide substrates revealed that LPS-stimulated kinase activity selectively phosphorylated their serine-5 (Ser-5) residue. Kinase inhibitors for cAMP-dependent kinase such as H-89 inhibited the Ser-5 phosphorylation, but cAMP was not essential for the kinase activity. The LPS-stimulated kinase activity in cytosol fractions of macrophages was recovered as a sharp peak by anion exchange chromatography. These findings suggest that an as yet unknown H-89-sensitive serine kinase is rapidly activated by LPS stimulation and then phosphorylates p65/L-plastin, playing a vital role in macrophage activation.  相似文献   

8.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

9.
Herein, we describe a novel electrochemiluminescence (ECL) biosensor for protein kinase activities and inhibition monitoring based on the magnetic beads (MB) technology and signal enhancement of gold nanoparticles (GNP). In this design, ECL nanoprobes were prepared by conjugating GNP with phosphorylated DNA capture probes and tris-(2,2'-bipyridyl) ruthenium (TBR)-cysteamine. Zirconium cations, a specific bridging agent, mediate the linkage between biotin modified phosphorylated peptides and ECL nanoprobes. The complexes were then captured and enriched on the electrode surface by streptavidin-coated MB for ECL reaction. To confirm the feasibility of this biosensor, we employed protein kinase A (PKA) as the model kinase to validate the assay and a satisfactory detection limit of 0.005 U/mL was achieved. The combination of ECL and GNP lays a solid foundation for highly sensitive assay, meanwhile, the coupling of MB surfaces used for separation and capture with unmodified ECL electrode detection results in a greatly simplified and reusable protocol. Thus, our biosensor offers great promise for a highly sensitive and simple assay for protein kinase activity. Furthermore, the inhibition of PKA activity was monitored on the basis of the ECL signals change in response to the concentration of PKA inhibitor.  相似文献   

10.
A 6-acryloyl-2-dimethylaminonapthalene (acrylodan)-labeled 25-amino acid peptide (acrylodan-CKK-KKRFSFKKSFKLSGFSFKKNKK-COO-), containing the protein kinase C (PKC) phosphorylation sites of brain myristoylated alanine-rich kinase C substrate protein, undergoes a 20% fluorescence decrease when it is phosphorylated by phospholipid/calcium-dependent protein kinase (PKC). This fluorescence decrease is dependent on the presence of PKC, calcium (half-maximal stimulation at pCa = 6.2), phosphatidylserine, diacylglycerol, or phorbol-12-myristate-13-acetate (half-maximal stimulation at 2 nM) and ATP, and correlates well (r = 0.997) with [32P]phosphate incorporation into the peptide. This fluorescence assay allows detection of 0.02 nM PKC, while similar concentrations of cyclic AMP-dependent or type II calmodulin-dependent protein kinases produced no change in peptide fluorescence. The method can be used to assay purified PKC as well as activity in crude brain homogenates. Incubation of PKC with staurosporine inhibits the fluorescence decrease with an IC50 of 2 nM. Thus the fluorescence decrease that occurs in the acrylodan-peptide provides a continuous fluorescence assay for PKC activity.  相似文献   

11.
G M Polya  S Chandra    R Condron 《Plant physiology》1993,101(2):545-551
A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.  相似文献   

12.
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.  相似文献   

13.
C M O'Callahan  M M Hosey 《Biochemistry》1988,27(16):6071-6077
Evidence from electrophysiological and ion flux studies has established that dihydropyridine-sensitive calcium channels are subject to regulation by neurotransmitter-mediated phosphorylation and dephosphorylation reactions. In the present study, we have further characterized the phosphorylation by cAMP-dependent protein kinase and a multifunctional Ca/calmodulin-dependent protein kinase of the membrane-associated form of the 165-kDa polypeptide identified as the skeletal muscle dihydropyridine receptor. The initial rates of phosphorylation of the 165-kDa peptide by both protein kinases were found to be relatively good compared to the rates of phosphorylation of established substrates of the enzymes. Phosphorylation of the 165-kDa peptide by both protein kinases was additive. Prior phosphorylation by either one of the kinases alone did not preclude phosphorylation by the second kinase. The cAMP-dependent protein kinase phosphorylated the 165-kDa peptide preferentially at serine residues, although a small amount of phosphothreonine was also formed. In contrast, after phosphorylation of the 165-kDa peptide by the Ca/calmodulin-dependent protein kinase, slightly more phosphothreonine than phosphoserine was recovered. Phosphopeptide mapping indicated that the two kinases phosphorylated the peptide at distinct as well as similar sites. Notably, one major site phosphorylated by the cAMP-dependent protein kinase was not phosphorylated by the Ca/calmodulin-dependent protein kinase, while other sites were phosphorylated to a high degree by the Ca/calmodulin-dependent protein kinase, but to a much lesser degree by the cAMP-dependent protein kinase. The results show that the 165-kDa dihydropyridine receptor from skeletal muscle can be multiply phosphorylated at distinct sites by the cAMP- and Ca/calmodulin-dependent protein kinases. As the 165-kDa peptide may be the major functional unit of the dihydropyridine-sensitive Ca channel, the results suggest that the phosphorylation-dependent modulation of Ca channel activity by neurotransmitters may involve phosphorylation of the 165-kDa peptide at multiple sites.  相似文献   

14.
Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection has been developed for a protein kinase assay. This protein kinase assay could readily determine the phosphorylation activity of substrate peptide kemptide using cAMP-dependent protein kinase (PKA) as a model enzyme. Kemptide and phosphorylated kemptide could be reacted with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a fluorescence derivatization reagent for LIF detection by directly adding NBD-F into the PKA enzymatic reaction mixture. These derivatives of substrate and product were separated and detected within the analysis time of 5 min by micellar electrokinetic mode using a mixture of sodium dodecylsulfate and methanol as a running buffer. Good linearity of the peak response of the phosphorylated kemptide was obtained over the range of 1-20 mU/tube of PKA in the assay. The relative standard deviation of the peak areas of the phosphorylated kemptide using 2, 5 and 10 mU/tube of PKA were calculated to <10.4%, indicating that the assay was reproducible. Also, IC(50) values of six PKA inhibitors, the K(i) value and the inhibition pattern of one inhibitor, which were calculated to estimate by the variation of the peak area of the phosphorylated kemptide using 5 mU/tube of PKA, were consistent with the published data. The sensitivity of the assay was higher than that of enzyme-linked immunosorbent assay (ELISA) for PKA phosphorylation activity, as IC(50) values, K(i) value, and the inhibition mechanism of inhibitors could be estimated using one-tenth amounts of PKA, compared with that of ELISA. The MEKC-LIF is expected to be very useful for protein kinase assay and its application to the estimation of inhibitors because this method does not entail experimentally troublesome procedures such as the preparation of antibody or fluorescence-labeled substrate.  相似文献   

15.
Plant viruses encode movement proteins (MPs) to facilitate transport of their genomes from infected into neighboring healthy cells through plasmodesmata. Growing evidence suggests that specific phosphorylation events can regulate MP functions. The coat protein (CP) of potato virus A (PVA; genus Potyvirus) is a multifunctional protein involved both in virion assembly and virus movement. Labeling of PVA-infected tobacco leaves with [(33)P]orthophosphate demonstrated that PVA CP is phosphorylated in vivo. Competition assays established that PVA CP and the well characterized 30-kDa MP of tobacco mosaic virus (genus Tobamovirus) are phosphorylated in vitro by the same Ser/Thr kinase activity from tobacco leaves. This activity exhibits a strong preference for Mn(2+) over Mg(2+), can be inhibited by micromolar concentrations of Zn(2+) and Cd(2+), and is not Ca(2+)-dependent. Tryptic phosphopeptide mapping revealed that PVA CP was phosphorylated by this protein kinase activity on multiple sites. In contrast, PVA CP was not phosphorylated when packaged into virions, suggesting that the phosphorylation sites are located within the RNA binding domain and not exposed on the surface of the virion. Furthermore, two independent experimental approaches demonstrated that the RNA binding function of PVA CP is strongly inhibited by phosphorylation. From these findings, we suggest that protein phosphorylation represents a possible mechanism regulating formation and/or stability of viral ribonucleoproteins in planta.  相似文献   

16.
A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based kinase assay using a peptide substrate tagged with a biotinyl group has been developed. The peptide moiety was designed to serve as an efficient substrate for calcium/calmodulin-dependent protein kinase II, based on the in vivo phosphorylation site of phosrestin I, a Drosophila homolog of arrestin. In the assay, the quantitative relationship was determined from the ratio of the peak areas between the two peaks respectively representing the unphosphorylated and the phosphorylated substrate. Attempts to assay phosphorylated peptides directly from the reaction mixture, gave inaccurate results because of the high noise level caused by the presence of salts and detergents. In contrast, after purifying the substrate peptides with the biotin affinity tag using streptavidin-coated magnetic beads, peak areas accurately represented the ratio between the unphosphorylated and phosphorylated peptide. By changing the substrate peptide to a peptide sequence that serves as a kinase substrate, it is expected that an efficient non-radioactive protein kinase assay using MALDI-TOF MS can be developed for any type of protein kinase. We call this technique "Affinity-Tagged Phosphorylation Assay by MALDI-TOF MS (ATPA-MALDI)." ATPA-MALDI should serve as a quick and efficient non-radioactive protein kinase assay by MALDI-TOF MS.  相似文献   

17.
Quantitative immunoassays to discriminate and quantitate phospholamban and its phosphorylation states in heart homogenates were developed using known amounts of protein determined by amino acid analysis. Synthetic 1-52 phospholamban, the hydrophilic 1-25 peptide, and 1-25 phosphopeptides containing P-Ser(16), P-Thr(17), and dually phosphorylated (P-Ser(16), P-Thr(17)) were used to calibrate immunoblot systems. In addition, synthetic 1-52 peptide was phosphorylated using cAMP-dependent protein kinase (P-Ser(16)) or Ca(2+)-calmodulin protein kinase (P-Thr(17)) and then separated from unphosphorylated 1-52 by HPLC prior to quantitation. Further, canine cardiac sarcoplasmic reticulum was phosphorylated in vitro using [gamma-(32)P]-ATP with cAMP-dependent protein kinase and/or Ca(2+)-calmodulin-dependent protein kinase as well as sequential phosphorylation in both orders to assess the veracity of antibody recognition of phosphorylated forms. Western blots proved useful in characterizing the reactivity of the different antibodies to phospholamban and phosphorylated phospholamban, but were inefficient for accurate quantitation and problems with antibody recognition of dually phosphorylated phospholamban were found. mAb 1D11 recognized all forms of phospholamban, polyclonal antibodies 285 and PS-16 were highly selective for P-Ser(16) phospholamban but had diminished reactivity to diphosphorylated (P-Ser(16), P-Thr(17)) phospholamban, and polyclonal antibody PT-17, although selective for P-Thr(17) phospholamban, generated very weak signals on Western blots and reacted poorly with diphosphorylated phospholamban. Results in quantitative immunodot blot experiments were even more compelling. None of the phosphorylation specific antibodies reacted with the diphospho 1-25 phospholamban peptide. Transgenic mouse hearts expressing varying levels of PLB and ferret heart biopsy samples taken before and after isoproterenol perfusion were analyzed. In all samples containing phospholamban, a basal level of Ser(16) phosphorylation (about 4% of the total PLB population) and a lesser amount of Thr(17) phosphorylation was observed. Upon isoproterenol perfusion, Ser(16) phosphorylation increased only to 17% of the total phospholamban population with a similar change in Thr(17) phosphorylation. This suggests that phospholamban phosphorylation may serve as an electrostatic switch that dissociates inactive calcium pump complexes into catalytically active units. Thus, direct correlations between phospholamban phosphorylation state and contractile parameters may not be valid.  相似文献   

18.
Phosphorylation of myristoylated alanine-rich protein kinase C substrate (MARCKS) by protein kinase C eliminates actin filament cross-linking activity, but residual filament binding activity docks phosphorylated MARCKS on filamentous actin. The postulated actin-binding region of MARCKS, which includes a Ca(2+)-calmodulin-binding site, has been portrayed with alpha-helical structure, analogous to other calmodulin-binding domains. Previous speculation suggested that MARCKS may dimerize to form the two functional actin-binding sites requisite for cross-linking activity. Contrary to these hypotheses, we show that MARCKS peptide with actin-cross-linking activity has an extended structure in aqueous solution but assumes a more compact structure upon phosphorylation. We hypothesize that structural changes in the MARCKS peptide induced by phosphorylation create a dynamic structure that, on average, has only one actin-binding site. Moreover, independent of the state of phosphorylation, this peptide is monomeric rather than dimeric, implying that two distinct actin-binding sites are responsible for the actin-cross-linking activity of unphosphorylated MARCKS. These studies uniquely elucidate the mechanism by which phosphorylation of MARCKS induces structural changes and suggest how these structural changes determine biological activity.  相似文献   

19.
The mechanisms of colorimetric assays based on aggregation of gold nanoparticles (GNPs) have been separated into two categories, crosslinking, and noncrosslinking aggregation. The noncrosslinking aggregation has recently been emerging as a simple and rapid mechanism and has been applied to enzymatic activity assays and DNA detection. We report here the detailed study of an enzymatic activity assay for protein kinases based on noncrosslinking aggregation. The principle of the assay is to detect kinase activity by utilizing the difference of coagulating ability of a cationic substrate peptide and its phosphorylated form toward GNPs with anionic surface charge. The critical coagulation concentrations (CCCs) of the peptides were about 10(3) times lower than those of the metal cations with the same cationic charges. The multivalent coordination bonds of the functional groups of the peptides with the GNP surface will strongly support the adsorption of the peptide on the GNP surface. The effect of the GNP size (10, 20, 40, 60 nm) on the dynamic range of OD before and after aggregation was studied. The dynamic range became a maximum for 20 nm GNP among those studied. The difference of CCC between the phosphorylated and nonphosphorylated peptides was governed by (1) the ratio between the peptide concentration and the surface area concentration of GNP and (2) the net charge of the peptides. When the assay system was applied to the activity assessment of protein kinase A, the dynamic range of OD was largest for 20 nm GNPs. However, when the peptide concentration was lowered, the largest 60 nm GNP was advantageous because of its smaller specific surface area.  相似文献   

20.
Enzymatic properties and the protein pattern of sarcolemma fractions isolated from three groups of rabbits: euthyroid, hyperthyroid and hypothyroid, were studied. The amount of phosphorylated intermediate formed by the calmodulin-dependent (Ca2+-Mg2+)ATPase and the activity of this enzyme as well as that of (Na+-K+)ATPase were the highest in membranes isolated at the hyperthyroid state. On the other hand, sarcolemma obtained from the hypothyroid animals exhibited a decreased activity of (Na+-K+)ATPase, while the activity of calmodulin-dependent (Ca2+-Mg2+)ATPase was the same as in the preparations obtained from euthyroid animals. Thyroid hormones also changed the protein pattern of muscle sarcolemma. Membranes isolated from hyperthyroid animals lacked peptides of apparent molecular masses of 41 kDa and 53 kDa, while a peptide of the apparent molecular mass of 63 kDa was enriched in the preparation from hypothyroid animals. Thyroid hormones affected endogenous cAMP-dependent protein phosphorylation. The sarcolemma fraction obtained from hyperthyroid animals exhibited a decreased phosphorylation of peptides of apparent molecular masses of 30 kDa and 47 kDa, while the cAMP-independent phosphorylation of several other peptides was augmented. Moreover, sarcolemma preparations isolated from hyperthyroid animals showed higher activity of cAMP-independent protein kinase(s) and lower activity of cAMP-dependent protein kinase when compared to the euthyroid preparations. It is proposed that thyroxine increases the content of calmodulin-dependent (Ca2+-Mg2+)ATPase protein and affects the activity of cAMP-independent and cAMP-dependent protein kinases bound to sarcolemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号